net.finmath.montecarlo.automaticdifferentiation.backward.alternative.RandomVariableUniqueVariable Maven / Gradle / Ivy
/**
*
*/
package net.finmath.montecarlo.automaticdifferentiation.backward.alternative;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.function.DoubleBinaryOperator;
import java.util.function.DoubleUnaryOperator;
import java.util.function.IntToDoubleFunction;
import java.util.stream.DoubleStream;
import net.finmath.functions.DoubleTernaryOperator;
import net.finmath.montecarlo.RandomVariableFromDoubleArray;
import net.finmath.stochastic.RandomVariable;
/**
* @author Stefan Sedlmair
* @version 1.0
*/
public class RandomVariableUniqueVariable implements RandomVariable {
private static final long serialVersionUID = -2631868286977854016L;
public enum OperatorType {
ADD, MULT, DIV, SUB, SQUARED, SQRT, LOG, SIN, COS, EXP
}
private final RandomVariableUniqueVariableFactory factory = new RandomVariableUniqueVariableFactory();
private ArrayList parentsVariables;
private OperatorType parentOperatorType; /* important for the partial derivatives */
private int variableID;
private boolean isConstant;
/*---------------------------------------------------------------------------------------------------------------------------------*/
/**
* Do not use this constructor on its own. It is thought only to be use by the {@link RandomVariableUniqueVariableFactory}!
*
* @param variableID is the index of the corresponding {@link RandomVariable} in the ArrayList of the {@link RandomVariableUniqueVariableFactory}
* @param isConstant If true, this is a constant.
* @param parentVariables Indices of parents
* @param parentOperatorType Operator
*/
public RandomVariableUniqueVariable(final int variableID, final boolean isConstant, final ArrayList parentVariables, final OperatorType parentOperatorType) {
this.variableID = variableID;
this.isConstant = isConstant;
parentsVariables = parentVariables;
this.parentOperatorType = parentOperatorType;
}
public RandomVariableUniqueVariable(final double time, final double[] values, final boolean isConstant, final ArrayList parentVariables, final OperatorType parentOperatorType){
constructRandomVariableUniqueVariable(new RandomVariableFromDoubleArray(time, values), isConstant, parentVariables, parentOperatorType);
}
public RandomVariableUniqueVariable(final RandomVariable randomVariable, final boolean isConstant, final ArrayList parentVariables, final OperatorType parentOperatorType){
constructRandomVariableUniqueVariable(randomVariable, isConstant, parentVariables, parentOperatorType);
}
public RandomVariableUniqueVariable(final double time, final double[] values, final boolean isConstant){
constructRandomVariableUniqueVariable(new RandomVariableFromDoubleArray(time, values), isConstant, /*parentVariables*/ null, /*parentOperatorType*/ null);
}
public RandomVariableUniqueVariable(final RandomVariable randomVariable, final boolean isConstant){
constructRandomVariableUniqueVariable(randomVariable, isConstant, /*parentVariables*/ null, /*parentOperatorType*/ null);
}
public RandomVariableUniqueVariable(final double time, final double[] values){
constructRandomVariableUniqueVariable(new RandomVariableFromDoubleArray(time, values), /*isConstant*/ false, /*parentVariables*/ null, /*parentOperatorType*/ null);
}
public RandomVariableUniqueVariable(final RandomVariable randomVariable){
constructRandomVariableUniqueVariable(randomVariable, /*isConstant*/ false, /*parentVariables*/ null, /*parentOperatorType*/ null);
}
/**
* Function calls {@link RandomVariableUniqueVariableFactory} to use the given {@link RandomVariableFromDoubleArray}
* and save it to its internal ArrayList. The index of the object will be give to the new {@link RandomVariableUniqueVariable}
* object.
*
* @param randomVariable
* @param isConstant
* */
private void constructRandomVariableUniqueVariable(final RandomVariable randomVariable, final boolean isConstant, final ArrayList parentVariables, final OperatorType parentOperatorType){
/*
* by calling the method in the factory it will produce a new object of RandomVariable and
* the new item will be stored in its factory internal array list
*/
final RandomVariable normalrandomvariable = factory.createRandomVariable(randomVariable, isConstant, parentVariables, parentOperatorType);
/* by construction this object can be up-casted to RandomVariableUniqueVariable */
final RandomVariableUniqueVariable newrandomvariableuniquevariable = (RandomVariableUniqueVariable)normalrandomvariable;
/* now we have access to the internal variables of the new RandomVarialeUniqueVariable */
variableID = newrandomvariableuniquevariable.getVariableID();
this.isConstant = newrandomvariableuniquevariable.isConstant();
parentsVariables = newrandomvariableuniquevariable.getParentVariables();
this.parentOperatorType = newrandomvariableuniquevariable.getParentOperatorType();
}
/*---------------------------------------------------------------------------------------------------------------------------------*/
private int[] getParentIDs(){
if(parentsVariables == null) {
return null;
}
final int[] parentIDs = new int[parentsVariables.size()];
for(int i = 0; i < parentsVariables.size(); i++){
parentIDs[i] = parentsVariables.get(i).getVariableID();
}
/*DO NOT sort this array! This deletes the information for divisions (de-/nominator)*/
return parentIDs;
}
public int getVariableID(){
return variableID;
}
private boolean isConstant(){
return isConstant;
}
private ArrayList getParentVariables(){
return parentsVariables;
}
private OperatorType getParentOperatorType(){
return parentOperatorType;
}
private ArrayList getListOfAllVariables(){
return factory.getListOfAllVariables();
}
private ArrayList getParentRandomVariables(){
final ArrayList parentrandomvariables = new ArrayList<>();
for(final RandomVariableUniqueVariable parent:parentsVariables){
parentrandomvariables.add(parent.getRandomVariable());
}
return parentrandomvariables;
}
private RandomVariable getRandomVariable(){
return getListOfAllVariables().get(variableID);
}
public boolean isVariable(){
return parentsVariables == null && isConstant() == false;
}
/*---------------------------------------------------------------------------------------------------------------------------------*/
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#equals(net.finmath.stochastic.RandomVariable)
*/
@Override
public boolean equals(final RandomVariable randomVariable) {
// TODO Auto-generated method stub
return false;
}
@Override
public double getFiltrationTime() {
return getRandomVariable().getFiltrationTime();
}
@Override
public int getTypePriority() {
return 3;
}
@Override
public double get(final int pathOrState) {
return getRandomVariable().get(pathOrState);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#size()
*/
@Override
public int size() {
return getRandomVariable().size();
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#isDeterministic()
*/
@Override
public boolean isDeterministic() {
return getRandomVariable().isDeterministic();
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#getRealizations()
*/
@Override
public double[] getRealizations() {
return getRandomVariable().getRealizations();
}
@Override
public Double doubleValue() {
return getRandomVariable().doubleValue();
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#getMin()
*/
@Override
public double getMin() {
// TODO Auto-generated method stub
return 0;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#getMax()
*/
@Override
public double getMax() {
// TODO Auto-generated method stub
return 0;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#getAverage()
*/
@Override
public double getAverage() {
// TODO Auto-generated method stub
return 0;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#getAverage(net.finmath.stochastic.RandomVariable)
*/
@Override
public double getAverage(final RandomVariable probabilities) {
// TODO Auto-generated method stub
return 0;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#getVariance()
*/
@Override
public double getVariance() {
// TODO Auto-generated method stub
return 0;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#getVariance(net.finmath.stochastic.RandomVariable)
*/
@Override
public double getVariance(final RandomVariable probabilities) {
// TODO Auto-generated method stub
return 0;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#getSampleVariance()
*/
@Override
public double getSampleVariance() {
// TODO Auto-generated method stub
return 0;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#getStandardDeviation()
*/
@Override
public double getStandardDeviation() {
// TODO Auto-generated method stub
return 0;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#getStandardDeviation(net.finmath.stochastic.RandomVariable)
*/
@Override
public double getStandardDeviation(final RandomVariable probabilities) {
// TODO Auto-generated method stub
return 0;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#getStandardError()
*/
@Override
public double getStandardError() {
// TODO Auto-generated method stub
return 0;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#getStandardError(net.finmath.stochastic.RandomVariable)
*/
@Override
public double getStandardError(final RandomVariable probabilities) {
// TODO Auto-generated method stub
return 0;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#getQuantile(double)
*/
@Override
public double getQuantile(final double quantile) {
// TODO Auto-generated method stub
return 0;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#getQuantile(double, net.finmath.stochastic.RandomVariable)
*/
@Override
public double getQuantile(final double quantile, final RandomVariable probabilities) {
// TODO Auto-generated method stub
return 0;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#getQuantileExpectation(double, double)
*/
@Override
public double getQuantileExpectation(final double quantileStart, final double quantileEnd) {
// TODO Auto-generated method stub
return 0;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#getHistogram(double[])
*/
@Override
public double[] getHistogram(final double[] intervalPoints) {
return getRandomVariable().getHistogram(intervalPoints);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#getHistogram(int, double)
*/
@Override
public double[][] getHistogram(final int numberOfPoints, final double standardDeviations) {
return getRandomVariable().getHistogram(numberOfPoints, standardDeviations);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#cache()
*/
@Override
public RandomVariable cache() {
return getRandomVariable().cache();
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#apply(java.util.function.DoubleUnaryOperator)
*/
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#floor(double)
*/
@Override
public RandomVariable floor(final double floor) {
// TODO Auto-generated method stub
return null;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#add(double)
*/
@Override
public RandomVariable add(final double value) {
// TODO Auto-generated method stub
return null;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#sub(double)
*/
@Override
public RandomVariable sub(final double value) {
// TODO Auto-generated method stub
return null;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#mult(double)
*/
@Override
public RandomVariable mult(final double value) {
// TODO Auto-generated method stub
return null;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#div(double)
*/
@Override
public RandomVariable div(final double value) {
// TODO Auto-generated method stub
return null;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#pow(double)
*/
@Override
public RandomVariable pow(final double exponent) {
return null;
}
@Override
public RandomVariable average() {
return null;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#squared()
*/
@Override
public RandomVariable squared() {
return apply(OperatorType.SQUARED, new RandomVariable[] {this});
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#sqrt()
*/
@Override
public RandomVariable sqrt() {
return apply(OperatorType.SQRT, new RandomVariable[] {this});
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#exp()
*/
@Override
public RandomVariable exp() {
return apply(OperatorType.EXP, new RandomVariable[] {this});
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#log()
*/
@Override
public RandomVariable log() {
return apply(OperatorType.LOG, new RandomVariable[] {this});
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#sin()
*/
@Override
public RandomVariable sin() {
return apply(OperatorType.SIN, new RandomVariable[] {this});
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#cos()
*/
@Override
public RandomVariable cos() {
return apply(OperatorType.COS, new RandomVariable[] {this});
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#add(net.finmath.stochastic.RandomVariable)
*/
@Override
public RandomVariable add(final RandomVariable randomVariable) {
return apply(OperatorType.ADD, new RandomVariable[] {this, randomVariable});
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#sub(net.finmath.stochastic.RandomVariable)
*/
@Override
public RandomVariable sub(final RandomVariable randomVariable) {
return apply(OperatorType.SUB, new RandomVariable[] {this, randomVariable});
}
@Override
public RandomVariable bus(final RandomVariable randomVariable) {
return apply(OperatorType.SUB, new RandomVariable[] {randomVariable, this});
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#mult(net.finmath.stochastic.RandomVariable)
*/
@Override
public RandomVariable mult(final RandomVariable randomVariable) {
return apply(OperatorType.MULT, new RandomVariable[] {this, randomVariable});
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#div(net.finmath.stochastic.RandomVariable)
*/
@Override
public RandomVariable div(final RandomVariable randomVariable) {
return apply(OperatorType.DIV, new RandomVariable[] {this, randomVariable});
}
@Override
public RandomVariable vid(final RandomVariable randomVariable) {
return apply(OperatorType.DIV, new RandomVariable[] {randomVariable, this});
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#cap(net.finmath.stochastic.RandomVariable)
*/
@Override
public RandomVariable cap(final RandomVariable cap) {
// TODO Auto-generated method stub
return null;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#floor(net.finmath.stochastic.RandomVariable)
*/
@Override
public RandomVariable floor(final RandomVariable floor) {
// TODO Auto-generated method stub
return null;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#accrue(net.finmath.stochastic.RandomVariable, double)
*/
@Override
public RandomVariable accrue(final RandomVariable rate, final double periodLength) {
// TODO Auto-generated method stub
return null;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#discount(net.finmath.stochastic.RandomVariable, double)
*/
@Override
public RandomVariable discount(final RandomVariable rate, final double periodLength) {
// TODO Auto-generated method stub
return null;
}
@Override
public RandomVariable choose(final RandomVariable valueIfTriggerNonNegative, final RandomVariable valueIfTriggerNegative) {
return null;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#invert()
*/
@Override
public RandomVariable invert() {
// TODO Auto-generated method stub
return null;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#abs()
*/
@Override
public RandomVariable abs() {
// TODO Auto-generated method stub
return null;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#addProduct(net.finmath.stochastic.RandomVariable, double)
*/
@Override
public RandomVariable addProduct(final RandomVariable factor1, final double factor2) {
// TODO Auto-generated method stub
return null;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#addProduct(net.finmath.stochastic.RandomVariable, net.finmath.stochastic.RandomVariable)
*/
@Override
public RandomVariable addProduct(final RandomVariable factor1, final RandomVariable factor2) {
// TODO Auto-generated method stub
return null;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#addRatio(net.finmath.stochastic.RandomVariable, net.finmath.stochastic.RandomVariable)
*/
@Override
public RandomVariable addRatio(final RandomVariable numerator, final RandomVariable denominator) {
// TODO Auto-generated method stub
return null;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#subRatio(net.finmath.stochastic.RandomVariable, net.finmath.stochastic.RandomVariable)
*/
@Override
public RandomVariable subRatio(final RandomVariable numerator, final RandomVariable denominator) {
// TODO Auto-generated method stub
return null;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#isNaN()
*/
@Override
public RandomVariable isNaN() {
return getRandomVariable().isNaN();
}
/**
* Check if an object can be up-casted to {@link RandomVariableUniqueVariable}.
* If not treat the object as an constant with respect to the AAD components.
*
* @param obj any object that should be tested.
* @return true if object can be casted to {@link RandomVariableUniqueVariable}, else false
* */
private boolean isUpcastableToRandomVariableUniqueVariable(final Object obj){
return (obj instanceof RandomVariableUniqueVariable);
}
/** Apply one of the possible {@link OperatorType} to an array of {@link RandomVariable}s.
* If the entries in the array are not an instance of {@link RandomVariableUniqueVariable}
* generate a new {@link RandomVariableUniqueVariable} and consider them as constants.
* */
private RandomVariableUniqueVariable apply(final OperatorType operatortype, final RandomVariable[] operatorVariables){
final ArrayList parentVariables = new ArrayList<>();
for(int i = 0; i < operatorVariables.length; i++){
/*
* is variable upcastable to {@link RandomVariableUniqueVariable} ?
*/
if(!isUpcastableToRandomVariableUniqueVariable(operatorVariables[i])){
/*
* if no then construct a new one and consider it constant
*/
operatorVariables[i] = new RandomVariableUniqueVariable(operatorVariables[i], /*isConstant*/ true);
}
/* add current function variable to parentVariables of new RandomVariableUniqueVariable*/
parentVariables.add(i, (RandomVariableUniqueVariable) operatorVariables[i]);
/* get the underlying RandomVariableFromDoubleArray from the factory */
operatorVariables[i] = parentVariables.get(i).getRandomVariable();
}
RandomVariable resultrandomvariable;
switch(operatortype){
/* functions with one argument */
case SQUARED:
resultrandomvariable = operatorVariables[0].squared();
break;
case SQRT:
resultrandomvariable = operatorVariables[0].sqrt();
break;
case EXP:
resultrandomvariable = operatorVariables[0].exp();
break;
case LOG:
resultrandomvariable = operatorVariables[0].log();
break;
case SIN:
resultrandomvariable = operatorVariables[0].sin();
break;
case COS:
resultrandomvariable = operatorVariables[0].cos();
break;
/* functions with two arguments */
case ADD:
resultrandomvariable = operatorVariables[0].add(operatorVariables[1]);
break;
case SUB:
resultrandomvariable = operatorVariables[0].sub(operatorVariables[1]);
break;
case MULT:
resultrandomvariable = operatorVariables[0].mult(operatorVariables[1]);
break;
case DIV:
resultrandomvariable = operatorVariables[0].div(operatorVariables[1]);
break;
/* if non of the above throw exception */
default:
throw new IllegalArgumentException("Operation not supported!\n");
}
/* create new RandomVariableUniqueVariable which is definitely NOT Constant */
return new RandomVariableUniqueVariable(resultrandomvariable, /*isConstant*/ false, parentVariables, operatortype);
}
/**
* Apply the AAD algorithm to this very variable
*
* NOTE: in this case it is indeed correct to assume that the output dimension is "one"
* meaning that there is only one {@link RandomVariableUniqueVariable} as an output.
*
* @return gradient for the built up function
* */
public RandomVariable[] getGradient(){
// for now let us take the case for output-dimension equal to one!
final int numberOfVariables = getNumberOfVariablesInList();
final int numberOfCalculationSteps = factory.getNumberOfEntriesInList();
final RandomVariable[] omega_hat = new RandomVariable[numberOfCalculationSteps];
// first entry gets initialized
omega_hat[numberOfCalculationSteps-1] = new RandomVariableFromDoubleArray(1.0);
/*
* TODO: Find way that calculations form here on are not 'recorded' by the factory
* IDEA: Let the calculation below run on {@link RandomVariableFromDoubleArray}, ie cast everything down!
* */
for(int functionIndex = numberOfCalculationSteps - 2; functionIndex > 0; functionIndex--){
// apply chain rule
omega_hat[functionIndex] = new RandomVariableFromDoubleArray(0.0);
/*TODO: save all D_{i,j}*\omega_j in vector and sum up later */
for(final RandomVariableUniqueVariable parent:parentsVariables){
final int variableIndex = parent.getVariableID();
omega_hat[functionIndex] = omega_hat[functionIndex].add(getPartialDerivative(functionIndex, variableIndex).mult(omega_hat[variableIndex]));
}
}
/* Due to the fact that we can still introduce 'new' true variables on the fly they are NOT the last couple of indices!
* Thus save the indices of the true variables and recover them after finalizing all the calculations
* IDEA: quit calculation after minimal true variable index is reached */
final RandomVariable[] gradient = new RandomVariable[numberOfVariables];
/* TODO: sort array in correct manner! */
final int[] indicesOfVariables = getIDsOfVariablesInList();
for(int i = 0; i < numberOfVariables; i++){
gradient[i] = omega_hat[numberOfCalculationSteps - numberOfVariables + indicesOfVariables[i]];
}
return gradient;
}
private ArrayList getListOfDependingTrueVariables(){
final ArrayList listOfDependingTrueVariables = new ArrayList<>();
for(final RandomVariableUniqueVariable parent:parentsVariables){
if(parent.isVariable() && !listOfDependingTrueVariables.contains(parent)){
listOfDependingTrueVariables.add(parent);
} else if (parent.getParentIDs() != null){
listOfDependingTrueVariables.addAll(parent.getListOfDependingTrueVariables());
}
}
return listOfDependingTrueVariables;
}
private int[] getIDsOfVariablesInList() {
final int[] IDsOfVariablesInList = new int[getNumberOfVariablesInList()];
final ArrayList listOfDependingTrueVariables = getListOfDependingTrueVariables();
for(final RandomVariableUniqueVariable variable:listOfDependingTrueVariables){
IDsOfVariablesInList[listOfDependingTrueVariables.indexOf(variable)] = variable.getVariableID();
}
return IDsOfVariablesInList;
}
private int getNumberOfVariablesInList() {
return getListOfDependingTrueVariables().size();
}
/**
* @param functionIndex
* @param variableIndex
* @return
*/
private RandomVariable getPartialDerivative(final int functionIndex, final int variableIndex) {
if(!Arrays.asList(getParentIDs()).contains(variableIndex)) {
return new RandomVariableFromDoubleArray(0.0);
}
final RandomVariableUniqueVariable currentRandomVariable = (RandomVariableUniqueVariable) getListOfAllVariables().get(functionIndex);
final ArrayList currentParentRandomVaribles = currentRandomVariable.getParentRandomVariables();
RandomVariable resultrandomvariable;
switch(currentRandomVariable.getParentOperatorType()){
/* functions with one argument */
case SQUARED:
resultrandomvariable = currentParentRandomVaribles.get(0).mult(2.0);
break;
case SQRT:
resultrandomvariable = currentParentRandomVaribles.get(0).sqrt().invert().mult(0.5);
break;
case EXP:
resultrandomvariable = currentParentRandomVaribles.get(0).exp();
break;
case LOG:
resultrandomvariable = currentParentRandomVaribles.get(0).invert();
break;
case SIN:
resultrandomvariable = currentParentRandomVaribles.get(0).cos();
break;
case COS:
resultrandomvariable = currentParentRandomVaribles.get(0).sin().mult(-1.0);
break;
/* functions with two arguments */
case ADD:
resultrandomvariable = new RandomVariableFromDoubleArray(1.0);
break;
case SUB:
resultrandomvariable = new RandomVariableFromDoubleArray(1.0);
if(variableIndex == currentRandomVariable.getParentIDs()[1]){
resultrandomvariable = resultrandomvariable.mult(-1.0);
}
break;
case MULT:
if(variableIndex == currentRandomVariable.getParentIDs()[0]){
resultrandomvariable = currentParentRandomVaribles.get(1);
} else {
resultrandomvariable = currentParentRandomVaribles.get(0);
}
break;
case DIV:
if(variableIndex == currentRandomVariable.getParentIDs()[0]){
resultrandomvariable = currentParentRandomVaribles.get(1).invert();
} else {
resultrandomvariable = currentParentRandomVaribles.get(0).div(currentParentRandomVaribles.get(1).squared()).mult(-1);
}
break;
/* if non of the above throw exception */
default:
throw new IllegalArgumentException("Operation not supported!\n");
}
return resultrandomvariable;
}
@Override
public String toString(){
return super.toString() + "\n" +
"time: " + getFiltrationTime() + "\n" +
"realizations: " + Arrays.toString(getRealizations()) + "\n" +
"variableID: " + variableID + "\n" +
"parentIDs: " + Arrays.toString(getParentIDs()) + ((getParentIDs() == null) ? "" : (" type: " + parentOperatorType.name())) + "\n" +
"isTrueVariable: " + isVariable() + "";
}
@Override
public RandomVariable cap(final double cap) {
// TODO Auto-generated method stub
return null;
}
@Override
public IntToDoubleFunction getOperator() {
throw new UnsupportedOperationException("Not supported.");
}
@Override
public DoubleStream getRealizationsStream() {
throw new UnsupportedOperationException("Not supported.");
}
@Override
public RandomVariable apply(final DoubleUnaryOperator operator) {
throw new UnsupportedOperationException("Applying functions is not supported.");
}
@Override
public RandomVariable apply(final DoubleBinaryOperator operator, final RandomVariable argument) {
throw new UnsupportedOperationException("Applying functions is not supported.");
}
@Override
public RandomVariable apply(final DoubleTernaryOperator operator, final RandomVariable argument1, final RandomVariable argument2) {
throw new UnsupportedOperationException("Applying functions is not supported.");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy