net.finmath.montecarlo.interestrate.models.covariance.LIBORVolatilityModelFourParameterExponentialForm Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 08.08.2005
*/
package net.finmath.montecarlo.interestrate.models.covariance;
import java.util.Map;
import net.finmath.montecarlo.RandomVariableFactory;
import net.finmath.montecarlo.RandomVariableFromArrayFactory;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;
/**
* Implements the volatility model
* \[
* \sigma_{i}(t_{j}) = ( a + b (T_{i}-t_{j}) ) exp(-c (T_{i}-t_{j})) + d \text{.}
* \]
*
* The parameters here have some interpretation:
*
* - The parameter a: an initial volatility level.
* - The parameter b: the slope at the short end (shortly before maturity).
* - The parameter c: exponential decay of the volatility in time-to-maturity.
* - The parameter d: if c > 0 this is the very long term volatility level.
*
*
* Note that this model results in a terminal (Black 76) volatility which is given
* by
* \[
* \left( \sigma^{\text{Black}}_{i}(t_{k}) \right)^2 = \frac{1}{t_{k}} \sum_{j=0}^{k-1} \left( ( a + b (T_{i}-t_{j}) ) exp(-c (T_{i}-t_{j})) + d \right)^{2} (t_{j+1}-t_{j})
* \]
* i.e., the instantaneous volatility is given by the picewise constant approximation of the function
* \[
* \sigma_{i}(t) = ( a + b (T_{i}-t) ) exp(-c (T_{i}-t)) + d
* \]
* on the time discretization \( \{ t_{j} \} \). For the exact integration of this formula see {@link LIBORVolatilityModelFourParameterExponentialFormIntegrated}.
*
* @author Christian Fries
* @version 1.0
*/
public class LIBORVolatilityModelFourParameterExponentialForm extends LIBORVolatilityModel {
private static final long serialVersionUID = -7371483471144264848L;
private final RandomVariableFactory abstractRandomVariableFactory;
private final RandomVariable a;
private final RandomVariable b;
private final RandomVariable c;
private final RandomVariable d;
private boolean isCalibrateable = false;
// A lazy init cache
private transient RandomVariable[][] volatility;
private transient Object volatilityLazyInitLock = new Object();
/**
* Creates the volatility model σi(tj) = ( a + b * (Ti-tj) ) * exp(-c (Ti-tj)) + d
*
* @param abstractRandomVariableFactory The random variable factor used to construct random variables from the parameters.
* @param timeDiscretization The simulation time discretization tj.
* @param liborPeriodDiscretization The period time discretization Ti.
* @param a The parameter a: an initial volatility level.
* @param b The parameter b: the slope at the short end (shortly before maturity).
* @param c The parameter c: exponential decay of the volatility in time-to-maturity.
* @param d The parameter d: if c > 0 this is the very long term volatility level.
* @param isCalibrateable Set this to true, if the parameters are available for calibration.
*/
public LIBORVolatilityModelFourParameterExponentialForm(final RandomVariableFactory abstractRandomVariableFactory, final TimeDiscretization timeDiscretization, final TimeDiscretization liborPeriodDiscretization, final RandomVariable a, final RandomVariable b, final RandomVariable c, final RandomVariable d, final boolean isCalibrateable) {
super(timeDiscretization, liborPeriodDiscretization);
this.abstractRandomVariableFactory = abstractRandomVariableFactory;
this.a = a;
this.b = b;
this.c = c;
this.d = d;
this.isCalibrateable = isCalibrateable;
}
/**
* Creates the volatility model σi(tj) = ( a + b * (Ti-tj) ) * exp(-c (Ti-tj)) + d
*
* @param timeDiscretization The simulation time discretization tj.
* @param liborPeriodDiscretization The period time discretization Ti.
* @param a The parameter a: an initial volatility level.
* @param b The parameter b: the slope at the short end (shortly before maturity).
* @param c The parameter c: exponential decay of the volatility in time-to-maturity.
* @param d The parameter d: if c > 0 this is the very long term volatility level.
* @param isCalibrateable Set this to true, if the parameters are available for calibration.
*/
public LIBORVolatilityModelFourParameterExponentialForm(final TimeDiscretization timeDiscretization, final TimeDiscretization liborPeriodDiscretization, final RandomVariable a, final RandomVariable b, final RandomVariable c, final RandomVariable d, final boolean isCalibrateable) {
this(new RandomVariableFromArrayFactory(), timeDiscretization, liborPeriodDiscretization, a, b, c, d, isCalibrateable);
}
/**
* Creates the volatility model σi(tj) = ( a + b * (Ti-tj) ) * exp(-c (Ti-tj)) + d
*
* @param abstractRandomVariableFactory The random variable factor used to construct random variables from the parameters.
* @param timeDiscretization The simulation time discretization tj.
* @param liborPeriodDiscretization The period time discretization Ti.
* @param a The parameter a: an initial volatility level.
* @param b The parameter b: the slope at the short end (shortly before maturity).
* @param c The parameter c: exponential decay of the volatility in time-to-maturity.
* @param d The parameter d: if c > 0 this is the very long term volatility level.
* @param isCalibrateable Set this to true, if the parameters are available for calibration.
*/
public LIBORVolatilityModelFourParameterExponentialForm(final RandomVariableFactory abstractRandomVariableFactory, final TimeDiscretization timeDiscretization, final TimeDiscretization liborPeriodDiscretization, final double a, final double b, final double c, final double d, final boolean isCalibrateable) {
super(timeDiscretization, liborPeriodDiscretization);
this.abstractRandomVariableFactory = abstractRandomVariableFactory;
this.a = abstractRandomVariableFactory.createRandomVariable(a);
this.b = abstractRandomVariableFactory.createRandomVariable(b);
this.c = abstractRandomVariableFactory.createRandomVariable(c);
this.d = abstractRandomVariableFactory.createRandomVariable(d);
this.isCalibrateable = isCalibrateable;
}
/**
* Creates the volatility model σi(tj) = ( a + b * (Ti-tj) ) * exp(-c (Ti-tj)) + d
*
* @param timeDiscretization The simulation time discretization tj.
* @param liborPeriodDiscretization The period time discretization Ti.
* @param a The parameter a: an initial volatility level.
* @param b The parameter b: the slope at the short end (shortly before maturity).
* @param c The parameter c: exponential decay of the volatility in time-to-maturity.
* @param d The parameter d: if c > 0 this is the very long term volatility level.
* @param isCalibrateable Set this to true, if the parameters are available for calibration.
*/
public LIBORVolatilityModelFourParameterExponentialForm(final TimeDiscretization timeDiscretization, final TimeDiscretization liborPeriodDiscretization, final double a, final double b, final double c, final double d, final boolean isCalibrateable) {
this(new RandomVariableFromArrayFactory(), timeDiscretization, liborPeriodDiscretization, a, b, c, d, isCalibrateable);
}
@Override
public RandomVariable[] getParameter() {
if(!isCalibrateable) {
return null;
}
final RandomVariable[] parameter = new RandomVariable[4];
parameter[0] = a;
parameter[1] = b;
parameter[2] = c;
parameter[3] = d;
return parameter;
}
@Override
public LIBORVolatilityModelFourParameterExponentialForm getCloneWithModifiedParameter(final RandomVariable[] parameter) {
if(!isCalibrateable) {
return this;
}
return new LIBORVolatilityModelFourParameterExponentialForm(
abstractRandomVariableFactory,
getTimeDiscretization(),
getLiborPeriodDiscretization(),
parameter[0],
parameter[1],
parameter[2],
parameter[3],
isCalibrateable
);
}
@Override
public RandomVariable getVolatility(final int timeIndex, final int liborIndex) {
synchronized (volatilityLazyInitLock) {
if(volatility == null) {
volatility = new RandomVariable[getTimeDiscretization().getNumberOfTimeSteps()][getLiborPeriodDiscretization().getNumberOfTimeSteps()];
}
if(volatility[timeIndex][liborIndex] == null) {
final double time = getTimeDiscretization().getTime(timeIndex);
final double maturity = getLiborPeriodDiscretization().getTime(liborIndex);
final double timeToMaturity = maturity-time;
RandomVariable volatilityInstanteaneous;
if(timeToMaturity <= 0)
{
volatilityInstanteaneous = abstractRandomVariableFactory.createRandomVariable(0.0); // This forward rate is already fixed, no volatility
}
else
{
volatilityInstanteaneous = (a.addProduct(b, timeToMaturity)).mult(c.mult(-timeToMaturity).exp()).add(d);
}
volatility[timeIndex][liborIndex] = volatilityInstanteaneous;
}
return volatility[timeIndex][liborIndex];
}
}
@Override
public Object clone() {
return new LIBORVolatilityModelFourParameterExponentialForm(
abstractRandomVariableFactory,
super.getTimeDiscretization(),
super.getLiborPeriodDiscretization(),
a,
b,
c,
d,
isCalibrateable
);
}
@Override
public LIBORVolatilityModel getCloneWithModifiedData(final Map dataModified) {
RandomVariableFactory abstractRandomVariableFactory = this.abstractRandomVariableFactory;
TimeDiscretization timeDiscretization = this.getTimeDiscretization();
TimeDiscretization liborPeriodDiscretization = this.getLiborPeriodDiscretization();
RandomVariable a = this.a;
RandomVariable b = this.b;
RandomVariable c = this.c;
RandomVariable d = this.d;
boolean isCalibrateable = this.isCalibrateable;
if(dataModified != null) {
// Explicitly passed covarianceModel has priority
abstractRandomVariableFactory = (RandomVariableFactory)dataModified.getOrDefault("randomVariableFactory", abstractRandomVariableFactory);
timeDiscretization = (TimeDiscretization)dataModified.getOrDefault("timeDiscretization", timeDiscretization);
liborPeriodDiscretization = (TimeDiscretization)dataModified.getOrDefault("liborPeriodDiscretization", liborPeriodDiscretization);
isCalibrateable = (boolean)dataModified.getOrDefault("isCalibrateable", isCalibrateable);
if(dataModified.getOrDefault("a", a) instanceof RandomVariable) {
a = abstractRandomVariableFactory.createRandomVariable(((RandomVariable)dataModified.getOrDefault("a", a)).doubleValue());
}else {
a = abstractRandomVariableFactory.createRandomVariable((double)dataModified.get("a"));
}
if(dataModified.getOrDefault("b", b) instanceof RandomVariable) {
b = abstractRandomVariableFactory.createRandomVariable(((RandomVariable)dataModified.getOrDefault("b", b)).doubleValue());
}else {
b = abstractRandomVariableFactory.createRandomVariable((double)dataModified.get("b"));
}
if(dataModified.getOrDefault("c", c) instanceof RandomVariable) {
c = abstractRandomVariableFactory.createRandomVariable(((RandomVariable)dataModified.getOrDefault("c", c)).doubleValue());
}else {
c = abstractRandomVariableFactory.createRandomVariable((double)dataModified.get("c"));
}
if(dataModified.getOrDefault("d", d) instanceof RandomVariable) {
d = abstractRandomVariableFactory.createRandomVariable(((RandomVariable)dataModified.getOrDefault("d", d)).doubleValue());
}else {
d = abstractRandomVariableFactory.createRandomVariable((double)dataModified.get("d"));
}
}
final LIBORVolatilityModel newModel = new LIBORVolatilityModelFourParameterExponentialForm(abstractRandomVariableFactory, timeDiscretization, liborPeriodDiscretization, a, b, c, d, isCalibrateable);
return newModel;
}
/*
private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException {
in.defaultReadObject();
// Init transient fields
volatilityLazyInitLock = new Object();
}
*/
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy