All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.montecarlo.interestrate.models.covariance.LIBORVolatilityModelFourParameterExponentialForm Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 08.08.2005
 */
package net.finmath.montecarlo.interestrate.models.covariance;

import java.util.Map;

import net.finmath.montecarlo.RandomVariableFactory;
import net.finmath.montecarlo.RandomVariableFromArrayFactory;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;

/**
 * Implements the volatility model
 * \[
 * 	\sigma_{i}(t_{j}) = ( a + b (T_{i}-t_{j}) ) exp(-c (T_{i}-t_{j})) + d \text{.}
 * \]
 *
 * The parameters here have some interpretation:
 * 
    *
  • The parameter a: an initial volatility level.
  • *
  • The parameter b: the slope at the short end (shortly before maturity).
  • *
  • The parameter c: exponential decay of the volatility in time-to-maturity.
  • *
  • The parameter d: if c > 0 this is the very long term volatility level.
  • *
* * Note that this model results in a terminal (Black 76) volatility which is given * by * \[ * \left( \sigma^{\text{Black}}_{i}(t_{k}) \right)^2 = \frac{1}{t_{k}} \sum_{j=0}^{k-1} \left( ( a + b (T_{i}-t_{j}) ) exp(-c (T_{i}-t_{j})) + d \right)^{2} (t_{j+1}-t_{j}) * \] * i.e., the instantaneous volatility is given by the picewise constant approximation of the function * \[ * \sigma_{i}(t) = ( a + b (T_{i}-t) ) exp(-c (T_{i}-t)) + d * \] * on the time discretization \( \{ t_{j} \} \). For the exact integration of this formula see {@link LIBORVolatilityModelFourParameterExponentialFormIntegrated}. * * @author Christian Fries * @version 1.0 */ public class LIBORVolatilityModelFourParameterExponentialForm extends LIBORVolatilityModel { private static final long serialVersionUID = -7371483471144264848L; private final RandomVariableFactory abstractRandomVariableFactory; private final RandomVariable a; private final RandomVariable b; private final RandomVariable c; private final RandomVariable d; private boolean isCalibrateable = false; // A lazy init cache private transient RandomVariable[][] volatility; private transient Object volatilityLazyInitLock = new Object(); /** * Creates the volatility model σi(tj) = ( a + b * (Ti-tj) ) * exp(-c (Ti-tj)) + d * * @param abstractRandomVariableFactory The random variable factor used to construct random variables from the parameters. * @param timeDiscretization The simulation time discretization tj. * @param liborPeriodDiscretization The period time discretization Ti. * @param a The parameter a: an initial volatility level. * @param b The parameter b: the slope at the short end (shortly before maturity). * @param c The parameter c: exponential decay of the volatility in time-to-maturity. * @param d The parameter d: if c > 0 this is the very long term volatility level. * @param isCalibrateable Set this to true, if the parameters are available for calibration. */ public LIBORVolatilityModelFourParameterExponentialForm(final RandomVariableFactory abstractRandomVariableFactory, final TimeDiscretization timeDiscretization, final TimeDiscretization liborPeriodDiscretization, final RandomVariable a, final RandomVariable b, final RandomVariable c, final RandomVariable d, final boolean isCalibrateable) { super(timeDiscretization, liborPeriodDiscretization); this.abstractRandomVariableFactory = abstractRandomVariableFactory; this.a = a; this.b = b; this.c = c; this.d = d; this.isCalibrateable = isCalibrateable; } /** * Creates the volatility model σi(tj) = ( a + b * (Ti-tj) ) * exp(-c (Ti-tj)) + d * * @param timeDiscretization The simulation time discretization tj. * @param liborPeriodDiscretization The period time discretization Ti. * @param a The parameter a: an initial volatility level. * @param b The parameter b: the slope at the short end (shortly before maturity). * @param c The parameter c: exponential decay of the volatility in time-to-maturity. * @param d The parameter d: if c > 0 this is the very long term volatility level. * @param isCalibrateable Set this to true, if the parameters are available for calibration. */ public LIBORVolatilityModelFourParameterExponentialForm(final TimeDiscretization timeDiscretization, final TimeDiscretization liborPeriodDiscretization, final RandomVariable a, final RandomVariable b, final RandomVariable c, final RandomVariable d, final boolean isCalibrateable) { this(new RandomVariableFromArrayFactory(), timeDiscretization, liborPeriodDiscretization, a, b, c, d, isCalibrateable); } /** * Creates the volatility model σi(tj) = ( a + b * (Ti-tj) ) * exp(-c (Ti-tj)) + d * * @param abstractRandomVariableFactory The random variable factor used to construct random variables from the parameters. * @param timeDiscretization The simulation time discretization tj. * @param liborPeriodDiscretization The period time discretization Ti. * @param a The parameter a: an initial volatility level. * @param b The parameter b: the slope at the short end (shortly before maturity). * @param c The parameter c: exponential decay of the volatility in time-to-maturity. * @param d The parameter d: if c > 0 this is the very long term volatility level. * @param isCalibrateable Set this to true, if the parameters are available for calibration. */ public LIBORVolatilityModelFourParameterExponentialForm(final RandomVariableFactory abstractRandomVariableFactory, final TimeDiscretization timeDiscretization, final TimeDiscretization liborPeriodDiscretization, final double a, final double b, final double c, final double d, final boolean isCalibrateable) { super(timeDiscretization, liborPeriodDiscretization); this.abstractRandomVariableFactory = abstractRandomVariableFactory; this.a = abstractRandomVariableFactory.createRandomVariable(a); this.b = abstractRandomVariableFactory.createRandomVariable(b); this.c = abstractRandomVariableFactory.createRandomVariable(c); this.d = abstractRandomVariableFactory.createRandomVariable(d); this.isCalibrateable = isCalibrateable; } /** * Creates the volatility model σi(tj) = ( a + b * (Ti-tj) ) * exp(-c (Ti-tj)) + d * * @param timeDiscretization The simulation time discretization tj. * @param liborPeriodDiscretization The period time discretization Ti. * @param a The parameter a: an initial volatility level. * @param b The parameter b: the slope at the short end (shortly before maturity). * @param c The parameter c: exponential decay of the volatility in time-to-maturity. * @param d The parameter d: if c > 0 this is the very long term volatility level. * @param isCalibrateable Set this to true, if the parameters are available for calibration. */ public LIBORVolatilityModelFourParameterExponentialForm(final TimeDiscretization timeDiscretization, final TimeDiscretization liborPeriodDiscretization, final double a, final double b, final double c, final double d, final boolean isCalibrateable) { this(new RandomVariableFromArrayFactory(), timeDiscretization, liborPeriodDiscretization, a, b, c, d, isCalibrateable); } @Override public RandomVariable[] getParameter() { if(!isCalibrateable) { return null; } final RandomVariable[] parameter = new RandomVariable[4]; parameter[0] = a; parameter[1] = b; parameter[2] = c; parameter[3] = d; return parameter; } @Override public LIBORVolatilityModelFourParameterExponentialForm getCloneWithModifiedParameter(final RandomVariable[] parameter) { if(!isCalibrateable) { return this; } return new LIBORVolatilityModelFourParameterExponentialForm( abstractRandomVariableFactory, getTimeDiscretization(), getLiborPeriodDiscretization(), parameter[0], parameter[1], parameter[2], parameter[3], isCalibrateable ); } @Override public RandomVariable getVolatility(final int timeIndex, final int liborIndex) { synchronized (volatilityLazyInitLock) { if(volatility == null) { volatility = new RandomVariable[getTimeDiscretization().getNumberOfTimeSteps()][getLiborPeriodDiscretization().getNumberOfTimeSteps()]; } if(volatility[timeIndex][liborIndex] == null) { final double time = getTimeDiscretization().getTime(timeIndex); final double maturity = getLiborPeriodDiscretization().getTime(liborIndex); final double timeToMaturity = maturity-time; RandomVariable volatilityInstanteaneous; if(timeToMaturity <= 0) { volatilityInstanteaneous = abstractRandomVariableFactory.createRandomVariable(0.0); // This forward rate is already fixed, no volatility } else { volatilityInstanteaneous = (a.addProduct(b, timeToMaturity)).mult(c.mult(-timeToMaturity).exp()).add(d); } volatility[timeIndex][liborIndex] = volatilityInstanteaneous; } return volatility[timeIndex][liborIndex]; } } @Override public Object clone() { return new LIBORVolatilityModelFourParameterExponentialForm( abstractRandomVariableFactory, super.getTimeDiscretization(), super.getLiborPeriodDiscretization(), a, b, c, d, isCalibrateable ); } @Override public LIBORVolatilityModel getCloneWithModifiedData(final Map dataModified) { RandomVariableFactory abstractRandomVariableFactory = this.abstractRandomVariableFactory; TimeDiscretization timeDiscretization = this.getTimeDiscretization(); TimeDiscretization liborPeriodDiscretization = this.getLiborPeriodDiscretization(); RandomVariable a = this.a; RandomVariable b = this.b; RandomVariable c = this.c; RandomVariable d = this.d; boolean isCalibrateable = this.isCalibrateable; if(dataModified != null) { // Explicitly passed covarianceModel has priority abstractRandomVariableFactory = (RandomVariableFactory)dataModified.getOrDefault("randomVariableFactory", abstractRandomVariableFactory); timeDiscretization = (TimeDiscretization)dataModified.getOrDefault("timeDiscretization", timeDiscretization); liborPeriodDiscretization = (TimeDiscretization)dataModified.getOrDefault("liborPeriodDiscretization", liborPeriodDiscretization); isCalibrateable = (boolean)dataModified.getOrDefault("isCalibrateable", isCalibrateable); if(dataModified.getOrDefault("a", a) instanceof RandomVariable) { a = abstractRandomVariableFactory.createRandomVariable(((RandomVariable)dataModified.getOrDefault("a", a)).doubleValue()); }else { a = abstractRandomVariableFactory.createRandomVariable((double)dataModified.get("a")); } if(dataModified.getOrDefault("b", b) instanceof RandomVariable) { b = abstractRandomVariableFactory.createRandomVariable(((RandomVariable)dataModified.getOrDefault("b", b)).doubleValue()); }else { b = abstractRandomVariableFactory.createRandomVariable((double)dataModified.get("b")); } if(dataModified.getOrDefault("c", c) instanceof RandomVariable) { c = abstractRandomVariableFactory.createRandomVariable(((RandomVariable)dataModified.getOrDefault("c", c)).doubleValue()); }else { c = abstractRandomVariableFactory.createRandomVariable((double)dataModified.get("c")); } if(dataModified.getOrDefault("d", d) instanceof RandomVariable) { d = abstractRandomVariableFactory.createRandomVariable(((RandomVariable)dataModified.getOrDefault("d", d)).doubleValue()); }else { d = abstractRandomVariableFactory.createRandomVariable((double)dataModified.get("d")); } } final LIBORVolatilityModel newModel = new LIBORVolatilityModelFourParameterExponentialForm(abstractRandomVariableFactory, timeDiscretization, liborPeriodDiscretization, a, b, c, d, isCalibrateable); return newModel; } /* private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException { in.defaultReadObject(); // Init transient fields volatilityLazyInitLock = new Object(); } */ }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy