All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.montecarlo.model.ProcessModel Maven / Gradle / Ivy

/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 28.03.2008
 */
package net.finmath.montecarlo.model;

import java.time.LocalDateTime;
import java.util.Map;

import net.finmath.exception.CalculationException;
import net.finmath.montecarlo.process.MonteCarloProcess;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;

/**
 * The interface for a model of a stochastic process X where
 * X = f(Y) and 
* \[ * dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} * \] * *
    *
  • The value of Y(0) is provided by the method {@link net.finmath.montecarlo.model.ProcessModel#getInitialState}. *
  • The value of μ is provided by the method {@link net.finmath.montecarlo.model.ProcessModel#getDrift}. *
  • The value λj is provided by the method {@link net.finmath.montecarlo.model.ProcessModel#getFactorLoading}. *
  • The function f is provided by the method {@link net.finmath.montecarlo.model.ProcessModel#applyStateSpaceTransform}. *
* Here, μ and λj may depend on X, which allows to implement stochastic drifts (like in a LIBOR market model) * of local volatility models. * *
* Examples: *
    *
  • * The Black Scholes model can be modeled by S = X = Y (i.e. f is the identity) * and μ1 = r S and λ1,1 = σ S. *
  • *
  • * Alternatively, the Black Scholes model can be modeled by S = X = exp(Y) (i.e. f is exp) * and μ1 = r - 0.5 σ σ and λ1,1 = σ. *
  • *
* * @author Christian Fries * @version 1.0 */ public interface ProcessModel { /** * Returns the model's date corresponding to the time discretization's \( t = 0 \). * * Note: Currently not all models provide a reference date. This will change in future versions. * * @return The model's date corresponding to the time discretization's \( t = 0 \). */ LocalDateTime getReferenceDate(); /** * Returns the time discretization of the model parameters. It is not necessary that this time discretization agrees * with the discretization of the stochactic process used in Abstract Process implementation. * * @return The time discretization */ TimeDiscretization getTimeDiscretization(); /** * Returns the number of components * * @return The number of components */ int getNumberOfComponents(); /** * Applies the state space transform fi to the given state random variable * such that Yi → fi(Yi) =: Xi. * * @param componentIndex The component index i. * @param randomVariable The state random variable Yi. * @return New random variable holding the result of the state space transformation. */ RandomVariable applyStateSpaceTransform(int componentIndex, RandomVariable randomVariable); default RandomVariable applyStateSpaceTransformInverse(final int componentIndex, final RandomVariable randomVariable) { throw new UnsupportedOperationException("Inverse of statespace transform not set"); } /** * Returns the initial value of the state variable of the process Y, not to be * confused with the initial value of the model X (which is the state space transform * applied to this state value. * * @return The initial value of the state variable of the process Y(t=0). */ RandomVariable[] getInitialState(); /** * Return the numeraire at a given time index. * Note: The random variable returned is a defensive copy and may be modified. * * @param time The time t for which the numeraire N(t) should be returned. * @return The numeraire at the specified time as RandomVariableFromDoubleArray * @throws net.finmath.exception.CalculationException Thrown if the valuation fails, specific cause may be available via the cause() method. */ RandomVariable getNumeraire(double time) throws CalculationException; /** * This method has to be implemented to return the drift, i.e. * the coefficient vector
* μ = (μ1, ..., μn) such that X = f(Y) and
* dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
* in an m-factor model. Here j denotes index of the component of the resulting * process. * * Since the model is provided only on a time discretization, the method may also (should try to) return the drift * as \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \). * * @param timeIndex The time index (related to the model times discretization). * @param realizationAtTimeIndex The given realization at timeIndex * @param realizationPredictor The given realization at timeIndex+1 or null if no predictor is available. * @return The drift or average drift from timeIndex to timeIndex+1, i.e. \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \) (or a suitable approximation). */ RandomVariable[] getDrift(int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor); /** * Returns the number of factors m, i.e., the number of independent Brownian drivers. * * @return The number of factors. */ int getNumberOfFactors(); /** * This method has to be implemented to return the factor loadings, i.e. * the coefficient vector
* λj = (λ1,j, ..., λm,j) such that X = f(Y) and
* dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
* in an m-factor model. Here j denotes index of the component of the resulting * process. * * @param timeIndex The time index (related to the model times discretization). * @param componentIndex The index j of the driven component. * @param realizationAtTimeIndex The realization of X at the time corresponding to timeIndex (in order to implement local and stochastic volatlity models). * @return The factor loading for given factor and component. */ RandomVariable[] getFactorLoading(int timeIndex, int componentIndex, RandomVariable[] realizationAtTimeIndex); /** * Return a random variable initialized with a constant using the models random variable factory. * * @param value The constant value. * @return A new random variable initialized with a constant value. */ default RandomVariable getRandomVariableForConstant(final double value) { return getProcess().getStochasticDriver().getRandomVariableForConstant(value); } /** * Set the numerical scheme used to generate the stochastic process. * * The model needs the numerical scheme to calculate, e.g., the numeraire. * * @param process The process. */ void setProcess(MonteCarloProcess process); /** * Get the numerical scheme used to generate the stochastic process. * * The model needs the numerical scheme to calculate, e.g., the numeraire. * * @return the process */ MonteCarloProcess getProcess(); /** * Returns a clone of this model where the specified properties have been modified. * * Note that there is no guarantee that a model reacts on a specification of a properties in the * parameter map dataModified. If data is provided which is ignored by the model * no exception may be thrown. * * @param dataModified Key-value-map of parameters to modify. * @return A clone of this model (or this model if no parameter was modified). * @throws CalculationException Thrown when the model could not be created. */ ProcessModel getCloneWithModifiedData(Map dataModified) throws CalculationException; }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy