All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.timeseries.models.parametric.GARCH Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 15.07.2012
 */


package net.finmath.timeseries.models.parametric;

import java.io.Serializable;
import java.util.HashMap;
import java.util.Map;

import org.apache.commons.math3.analysis.MultivariateFunction;
import org.apache.commons.math3.optimization.GoalType;
import org.apache.commons.math3.optimization.PointValuePair;

import net.finmath.optimizer.LevenbergMarquardt;
import net.finmath.optimizer.Optimizer;
import net.finmath.optimizer.SolverException;
import net.finmath.timeseries.HistoricalSimulationModel;

/**
 * Log-normal process with GARCH(1,1) volatility.
 *
 * This class estimate the process
 * \[
 *   \mathrm{d} \log(X) = \sigma(t) \mathrm{d}W(t)
 * \]
 * where \( \sigma \) is given by a GARCH(1,1) process from time discrete
 * realizations \( X_{i} \). That is, given a time series of values \( X_{i} \)
 * the GARCH(1,1) volatility of the log-returns \( \log(X_{i+1}/X_{i}) \) is
 * estimated.
 *
 * @author Christian Fries
 * @version 1.0
 */
public class GARCH implements HistoricalSimulationModel {

	private final double[] values;
	private final int windowIndexStart;
	private final int windowIndexEnd;
	private final int maxIterations = 1000000;

	/**
	 * Create GARCH model estimated form the given time series of values.
	 *
	 * @param values Given set of values.
	 */
	public GARCH(final double[] values) {
		this.values = values;
		windowIndexStart	= 0;
		windowIndexEnd		= values.length-1;
	}

	/**
	 * Create GARCH model estimated form the given time series of values.
	 *
	 * @param values Given set of values.
	 * @param windowIndexStart First index to consider in the given set of values.
	 * @param windowIndexEnd Last index to consider in the given set of values.
	 */
	public GARCH(final double[] values, final int windowIndexStart, final int windowIndexEnd) {
		this.values = values;
		this.windowIndexStart	= windowIndexStart;
		this.windowIndexEnd		= windowIndexEnd;
	}

	@Override
	public GARCH getCloneWithWindow(final int windowIndexStart, final int windowIndexEnd) {
		return new GARCH(values, windowIndexStart, windowIndexEnd);
	}

	/**
	 * Get log likelihood of the sample time series for given model parameters.
	 *
	 * @param omega The parameter ω of the GARCH model.
	 * @param alpha The parameter α of the GARCH model.
	 * @param beta The parameter β of the GARCH model.
	 * @return The log likelihood of the times series under the specified GARCH model.
	 */
	public double getLogLikelihoodForParameters(final double omega, final double alpha, final double beta)
	{
		double logLikelihood = 0.0;

		final double volScaling	= 1.0;
		double h			= omega / (1.0 - alpha - beta);
		for (int i = windowIndexStart+1; i <= windowIndexEnd-1; i++) {
			final double eval		= volScaling * (Math.log((values[i])/(values[i-1])));
			h = (omega + alpha * eval * eval) + beta * h;
			final double evalNext	= volScaling * (Math.log((values[i+1])/(values[i])));

			logLikelihood += - Math.log(h) - evalNext*evalNext / h;
		}
		logLikelihood += - Math.log(2 * Math.PI) * (windowIndexEnd-windowIndexStart);
		logLikelihood *= 0.5;

		return logLikelihood;
	}

	/**
	 * Returns the last estimate of the time series volatility.
	 *
	 * @param omega The parameter ω of the GARCH model.
	 * @param alpha The parameter α of the GARCH model.
	 * @param beta The parameter β of the GARCH model.
	 * @return Last residual, i.e., σ
	 */
	public double getLastResidualForParameters(final double omega, final double alpha, final double beta) {
		final double volScaling = 1.0;
		double h = omega / (1.0 - alpha - beta);
		for (int i = windowIndexStart+1; i <= windowIndexEnd; i++) {
			final double eval		= volScaling * (Math.log((values[i])/(values[i-1])));
			h = omega + alpha * eval * eval + beta * h;
		}

		return h;
	}

	public double[] getSzenarios(final double omega, final double alpha, final double beta) {
		final double[] szenarios = new double[windowIndexEnd-windowIndexStart+1-1];

		final double volScaling = 1.0;
		double h = omega / (1.0 - alpha - beta);
		double vol = Math.sqrt(h) * volScaling;
		for (int i = windowIndexStart+1; i <= windowIndexEnd; i++) {
			szenarios[i-windowIndexStart-1]	= Math.log((values[i])/(values[i-1])) / vol;

			final double eval		= volScaling * (Math.log((values[i])/(values[i-1])));
			h = omega + alpha * eval * eval + beta * h;
			vol = Math.sqrt(h) * volScaling;
		}
		java.util.Arrays.sort(szenarios);
		return szenarios;
	}

	public double[] getQuantilPredictionsForParameters(final double omega, final double alpha, final double beta, final double[] quantiles) {
		final double[] szenarios = getSzenarios(omega, alpha, beta);

		final double volScaling = 1.0;
		final double h = omega / (1.0 - alpha - beta);
		final double vol = Math.sqrt(h) * volScaling;

		final double[] quantileValues = new double[quantiles.length];
		for(int i=0; i getBestParameters() {
		return getBestParameters(null);
	}

	/* (non-Javadoc)
	 * @see net.finmath.timeseries.HistoricalSimulationModel#getBestParameters(java.util.Map)
	 */
	@Override
	public Map getBestParameters(final Map guess) {

		// Create the objective function for the solver
		class GARCHMaxLikelihoodFunction implements MultivariateFunction, Serializable {

			private static final long serialVersionUID = 7072187082052755854L;

			@Override
			public double value(final double[] variables) {
				/*
				 * Transform variables: The solver variables are in (-\infty, \infty).
				 * We transform the variable to the admissible domain for GARCH, that is
				 * omega > 0, 0 < alpha < 1, 0 < beta < (1-alpha), displacement > lowerBoundDisplacement
				 */
				final double omega	= Math.exp(variables[0]);
				final double mucorr	= Math.exp(-Math.exp(-variables[1]));
				final double muema	= Math.exp(-Math.exp(-variables[2]));
				final double beta		= mucorr * muema;
				final double alpha	= mucorr - beta;

				double logLikelihood = getLogLikelihoodForParameters(omega,alpha,beta);

				// Penalty to prevent solver from hitting the bounds
				logLikelihood -= Math.max(1E-30-omega,0)/1E-30;
				logLikelihood -= Math.max(1E-30-alpha,0)/1E-30;
				logLikelihood -= Math.max((alpha-1)+1E-30,0)/1E-30;
				logLikelihood -= Math.max(1E-30-beta,0)/1E-30;
				logLikelihood -= Math.max((beta-1)+1E-30,0)/1E-30;

				return logLikelihood;
			}

		}
		final GARCHMaxLikelihoodFunction objectiveFunction = new GARCHMaxLikelihoodFunction();

		// Create a guess for the solver
		double guessOmega = 1.0;
		double guessAlpha = 0.2;
		double guessBeta = 0.2;
		if(guess != null) {
			// A guess was provided, use that one
			guessOmega			= (Double)guess.get("Omega");
			guessAlpha			= (Double)guess.get("Alpha");
			guessBeta			= (Double)guess.get("Beta");
		}

		// Constrain guess to admissible range
		guessOmega			= restrictToOpenSet(guessOmega, 0.0, Double.MAX_VALUE);
		guessAlpha			= restrictToOpenSet(guessAlpha, 0.0, 1.0);
		guessBeta			= restrictToOpenSet(guessBeta, 0.0, 1.0-guessAlpha);


		final double guessMucorr	= guessAlpha + guessBeta;
		final double guessMuema	= guessBeta / (guessAlpha+guessBeta);

		// Transform guess to solver coordinates
		final double[] guessParameters = new double[3];
		guessParameters[0] = Math.log(guessOmega);
		guessParameters[1] = -Math.log(-Math.log(guessMucorr));
		guessParameters[2] = -Math.log(-Math.log(guessMuema));

		// Seek optimal parameter configuration
		final Optimizer lm = new LevenbergMarquardt(guessParameters, new double[] { 1000.0 }, maxIterations, 2) {
			private static final long serialVersionUID = 611999941537812214L;

			@Override
			public void setValues(final double[] arg0, final double[] arg1) {
				arg1[0] = objectiveFunction.value(arg0);
			}
		};

		double[] bestParameters = null;

		final boolean isUseLM = false;

		if(isUseLM) {
			try {
				lm.run();
			} catch (final SolverException e1) {
				// TODO Auto-generated catch block
				e1.printStackTrace();
			}
			bestParameters = lm.getBestFitParameters();
		}
		else {
			final org.apache.commons.math3.optimization.direct.CMAESOptimizer optimizer2 = new org.apache.commons.math3.optimization.direct.CMAESOptimizer();

			try {
				final PointValuePair result = optimizer2.optimize(
						maxIterations,
						objectiveFunction,
						GoalType.MAXIMIZE,
						guessParameters
						);
				bestParameters = result.getPoint();
			} catch(final org.apache.commons.math3.exception.MathIllegalStateException e) {
				System.out.println("Solver failed");
				bestParameters = guessParameters;
			}
		}

		// Transform parameters to GARCH parameters
		final double omega	= Math.exp(bestParameters[0]);
		final double mucorr	= Math.exp(-Math.exp(-bestParameters[1]));
		final double muema	= Math.exp(-Math.exp(-bestParameters[2]));
		final double beta		= mucorr * muema;
		final double alpha	= mucorr - beta;

		final double[] quantiles = {0.01, 0.05, 0.5};
		final double[] quantileValues = this.getQuantilPredictionsForParameters(omega, alpha, beta, quantiles);

		final Map results = new HashMap<>();
		results.put("Omega", omega);
		results.put("Alpha", alpha);
		results.put("Beta", beta);
		results.put("Szenarios", this.getSzenarios(omega, alpha, beta));
		results.put("Likelihood", this.getLogLikelihoodForParameters(omega, alpha, beta));
		results.put("Vol", Math.sqrt(this.getLastResidualForParameters(omega, alpha, beta)));
		results.put("Quantile=1%", quantileValues[0]);
		results.put("Quantile=5%", quantileValues[1]);
		results.put("Quantile=50%", quantileValues[2]);
		//		System.out.println(results.get("Likelihood") + "\t" + Arrays.toString(bestParameters));
		return results;
	}

	private static double restrictToOpenSet(double value, final double lowerBond, final double upperBound) {
		value = Math.max(value, lowerBond  * (1.0+Math.signum(lowerBond)*1E-15) + 1E-15);
		value = Math.min(value, upperBound * (1.0-Math.signum(upperBound)*1E-15) - 1E-15);
		return value;
	}
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy