net.finmath.montecarlo.templatemethoddesign.LogNormalProcess Maven / Gradle / Ivy
Show all versions of finmath-lib Show documentation
/*
* Created on 19.01.2004
*/
package net.finmath.montecarlo.templatemethoddesign;
import net.finmath.montecarlo.BrownianMotion;
import net.finmath.montecarlo.RandomVariableFromDoubleArray;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;
/**
* This class is an abstract base class to implement an Euler scheme of a multi-dimensional multi-factor log-normal Ito process.
* The dimension is called numberOfComponents
here. The default for numberOfFactors
is 1.
*
* @author Christian Fries
* @date 19.04.2008
* @version 1.5
*/
public abstract class LogNormalProcess {
public enum Scheme { EULER, PREDICTOR_USING_EULERSTEP, PREDICTOR_USING_LASTREALIZATION }
private BrownianMotion brownianMotion;
private RandomVariable[][] discreteProcess = null;
private RandomVariable[] discreteProcessWeights = null;
private final TimeDiscretization timeDiscretization;
private final int numberOfComponents;
private final int numberOfFactors;
private final int numberOfPaths;
private Scheme scheme = Scheme.EULER;
/**
* Create a log normal process.
*
* @param numberOfComponents The number of components (scalar processes).
* @param brownianMotion A Brownian motion
*/
public LogNormalProcess(
final int numberOfComponents,
final BrownianMotion brownianMotion) {
super();
timeDiscretization = brownianMotion.getTimeDiscretization();
this.numberOfComponents = numberOfComponents;
numberOfFactors = brownianMotion.getNumberOfFactors();
numberOfPaths = brownianMotion.getNumberOfPaths();
this.brownianMotion = brownianMotion;
}
/**
* Create a simulation of log normal process.
*
* @param timeDiscretization The time discretization of the process.
* @param numberOfComponents The number of components (the dimension of the process).
* @param numberOfPaths The number of path of the simulation.
*/
public LogNormalProcess(
final TimeDiscretization timeDiscretization,
final int numberOfComponents,
final int numberOfPaths) {
super();
this.timeDiscretization = timeDiscretization;
this.numberOfComponents = numberOfComponents;
numberOfFactors = 1;
this.numberOfPaths = numberOfPaths;
// Create a Brownian motion
brownianMotion = new net.finmath.montecarlo.BrownianMotionLazyInit(
timeDiscretization,
numberOfFactors,
numberOfPaths,
3141 /* seed */);
}
/**
* Create a simulation of log normal process.
*
* @param timeDiscretization The time discretization of the process.
* @param numberOfComponents The number of components (the dimension of the process).
* @param numberOfFactors The number of factors of the process.
* @param numberOfPaths The number of path of the simulation.
* @param seed The seed of the underlying random number generator.
*/
public LogNormalProcess(
final TimeDiscretization timeDiscretization,
final int numberOfComponents,
final int numberOfFactors,
final int numberOfPaths,
final int seed) {
super();
this.timeDiscretization = timeDiscretization;
this.numberOfComponents = numberOfComponents;
this.numberOfFactors = numberOfFactors;
this.numberOfPaths = numberOfPaths;
// Create a Brownian motion
brownianMotion = new net.finmath.montecarlo.BrownianMotionLazyInit(
timeDiscretization,
numberOfFactors,
numberOfPaths,
seed);
}
public abstract RandomVariable[] getInitialValue();
public abstract RandomVariable getDrift(int timeIndex, int componentIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor);
/**
* Get the the drift.
*
* @param timeIndex The time index (related to the model times discretization).
* @param realizationAtTimeIndex The given realization at timeIndex
* @param realizationPredictor The given realization at timeIndex+1
or null of no predictor is available.
* @return The (average) drift from timeIndex to timeIndex+1
*/
public RandomVariable[] getDrift(final int timeIndex, final RandomVariable[] realizationAtTimeIndex, final RandomVariable[] realizationPredictor) {
final RandomVariable[] drift = new RandomVariable[getNumberOfComponents()];
/*
* We implemented several different methods to calculate the drift
*/
for(int componentIndex=0; componentIndex
* dS(j) = (...) dt + S(j) * (λ(1,j) dW(1) + ... + λ(m,j) dW(m))
* in an m-factor model. Here j denotes index of the component of the resulting
* log-normal process and i denotes the index of the factor.
* Overwrite this method if you would like to implement a multi factor model.
*
* @param timeIndex The time index of the simulation time discretization.
* @param factor The factor index.
* @param component The component index.
* @param realizationAtTimeIndex The realization at the current time index.
* @return factor loading for given factor and component
*/
public abstract RandomVariable getFactorLoading(int timeIndex, int factor, int component, RandomVariable[] realizationAtTimeIndex);
/**
* This method returns the realization of the process at a certain time index.
*
* @param timeIndex Time index at which the process should be observed
* @return A vector of process realizations (on path)
*/
public RandomVariable[] getProcessValue(final int timeIndex)
{
// Thread safe lazy initialization
synchronized(this) {
if(discreteProcess == null || discreteProcess.length == 0)
{
doPrecalculateProcess();
}
}
// Return value of process
return discreteProcess[timeIndex];
}
/**
* This method returns the realization of the process at a certain time index.
*
* @param timeIndex Time index at which the process should be observed
* @param componentIndex Component of the process vector
* @return A vector of process realizations (on path)
*/
public RandomVariable getProcessValue(final int timeIndex, final int componentIndex)
{
if(timeIndex == 0) {
return getInitialValue()[componentIndex];
}
// Lazy initialization, synchronized for thread safety
synchronized(this) {
if(discreteProcess == null || discreteProcess.length == 0) {
doPrecalculateProcess();
}
}
// Return value of process
return discreteProcess[timeIndex][componentIndex];
}
/**
* This method returns the weights of a weighted Monte Carlo method (the probability density).
*
* @param timeIndex Time index at which the process should be observed
* @return A vector of positive weights which sums up to one
*/
public RandomVariable getMonteCarloWeights(final int timeIndex)
{
// Lazy initialization, synchronized for thread safety
synchronized(this) {
if(discreteProcessWeights == null || discreteProcessWeights.length == 0) {
doPrecalculateProcess();
}
}
// Return value of process
return discreteProcessWeights[timeIndex];
}
/**
* Calculates the whole (discrete) process.
*/
private void doPrecalculateProcess()
{
if(discreteProcess != null && discreteProcess.length != 0) {
return;
}
// Allocate Memory
discreteProcess = new RandomVariable[timeDiscretization.getNumberOfTimeSteps()+1][numberOfComponents];
discreteProcessWeights = new RandomVariable[getTimeDiscretization().getNumberOfTimeSteps()+1];
// Set initial Monte-Carlo weights
discreteProcessWeights[0] = new RandomVariableFromDoubleArray(0.0, 1.0/numberOfPaths);
// Store components
discreteProcess[0] = getInitialValue();
// Evolve process
for(int timeIndex = 1; timeIndex < timeDiscretization.getNumberOfTimeSteps()+1; timeIndex++)
{
// Generate process at timeIndex
final double deltaT = timeDiscretization.getTime(timeIndex) - timeDiscretization.getTime(timeIndex-1);
// Temp storage for variance and diffusion
final RandomVariable[] variance = new RandomVariable[numberOfComponents];
final RandomVariable[] diffusion = new RandomVariable[numberOfComponents];
// Calculate new realization
for(int componentIndex = numberOfComponents-1; componentIndex >= 0; componentIndex--)
{
// Calculate diffusion
// Temp storage for variance and diffusion
RandomVariable varianceOfComponent = new RandomVariableFromDoubleArray(getTime(timeIndex-1),0.0);
RandomVariable diffusionOfComponent = new RandomVariableFromDoubleArray(getTime(timeIndex-1),0.0);
// Generate values for diffusionOfComponent and varianceOfComponent
for(int factor=0; factor= 0; componentIndex--)
{
final RandomVariable driftOfComponent = drift[componentIndex];
final RandomVariable varianceOfComponent = variance[componentIndex];
final RandomVariable diffusionOfComponent = diffusion[componentIndex];
if(driftOfComponent == null) {
discreteProcess[timeIndex][componentIndex] = discreteProcess[timeIndex-1][componentIndex];
continue;
}
// Allocate memory for on path-realizations
final double[] newRealization = new double[numberOfPaths];
// Euler Scheme
final RandomVariable previouseRealization = discreteProcess[timeIndex-1][componentIndex];
// Generate values
for(int pathIndex = 0; pathIndex < numberOfPaths; pathIndex++)
{
final double previousValue = previouseRealization.get(pathIndex);
final double driftOnPath = driftOfComponent.get(pathIndex);
final double varianceOnPath = varianceOfComponent.get(pathIndex);
final double diffusionOnPath = diffusionOfComponent.get(pathIndex);
// The scheme
newRealization[pathIndex] = previousValue * Math.exp(driftOnPath * deltaT - 0.5 * varianceOnPath * deltaT + diffusionOnPath);
}
// Store components
discreteProcess[timeIndex][componentIndex] = new RandomVariableFromDoubleArray(getTime(timeIndex),newRealization);
}
if(scheme == Scheme.PREDICTOR_USING_EULERSTEP) {
final RandomVariable[] newRealization = new RandomVariableFromDoubleArray[numberOfComponents];
// Note: This is actually more than a predictor corrector: The drift of componentIndex already uses the corrected predictor from the previous components
drift = getDrift(timeIndex-1, discreteProcess[timeIndex-1], discreteProcess[timeIndex]);
// Apply corrector step to realizations at next time step
for(int componentIndex = 0; componentIndex < numberOfComponents; componentIndex++)
{
final RandomVariable driftOfComponent = drift[componentIndex];
final RandomVariable varianceOfComponent = variance[componentIndex];
final RandomVariable diffusionOfComponent = diffusion[componentIndex];
// Euler Scheme with corrected drift
final RandomVariable previouseRealization = discreteProcess[timeIndex-1][componentIndex];
// The scheme
// newValue = previousValue * Math.exp(driftValue * deltaT - 0.5 * varianceOnPath * deltaT + diffusionOnPath);
newRealization[componentIndex] = previouseRealization.mult((driftOfComponent.mult(deltaT).sub(varianceOfComponent.mult(0.5 * deltaT)).add(diffusionOfComponent)).exp());
} // End for(componentIndex)
// Store predictor-corrector corrected process.
discreteProcess[timeIndex] = newRealization;
} // End if(scheme == LogNormalProcess.SCHEME_PREDICTOR_USES_EULER)
// Set Monte-Carlo weights (since there is no Monte-Carlo weighting, the weights remain the same (namely 1.0/numberOfPaths).
discreteProcessWeights[timeIndex] = discreteProcessWeights[timeIndex-1];
} // End for(timeIndex)
}
/**
* @return Returns the numberOfComponents.
*/
public int getNumberOfComponents() {
return numberOfComponents;
}
/**
* @return Returns the numberOfPaths.
*/
public int getNumberOfPaths() {
return numberOfPaths;
}
/**
* @return Returns the numberOfFactors.
*/
public int getNumberOfFactors() {
return numberOfFactors;
}
/**
* @return Returns the timeDiscretizationFromArray.
*/
public TimeDiscretization getTimeDiscretization() {
return timeDiscretization;
}
/**
* Returns the time for a given simulation time index.
*
* @param timeIndex Time index
* @return Returns the time for a given time index.
*/
public double getTime(final int timeIndex) {
return timeDiscretization.getTime(timeIndex);
}
/**
* Returns the time index for a given simulation time.
*
* @param time A simulation time
* @return Returns the time index for a given time.
*/
public int getTimeIndex(final double time) {
return timeDiscretization.getTimeIndex(time);
}
/**
* @return Returns the Brownian motion used in the generation of the process
*/
public BrownianMotion getBrownianMotion() {
return brownianMotion;
}
/**
* @return Returns the scheme.
*/
public Scheme getScheme() {
return scheme;
}
/**
* A derived class may change the Brownian motion. This is only allowed prior to lazy initialization.
* The method should be used only while constructing new object. Do not use in flight.
*
* @param brownianMotion The brownianMotion to set.
*/
protected synchronized void setBrownianMotion(final BrownianMotion brownianMotion) {
if(discreteProcessWeights != null && discreteProcessWeights.length != 0) {
throw new RuntimeException("Tying to change lazy initialized immutable object after initialization.");
}
this.brownianMotion = brownianMotion;
}
/**
* @param scheme The scheme to set.
*/
public synchronized void setScheme(final Scheme scheme) {
if(discreteProcessWeights != null && discreteProcessWeights.length != 0) {
throw new RuntimeException("Tying to change lazy initialized immutable object after initialization.");
}
this.scheme = scheme;
}
}