All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.montecarlo.interestrate.models.LIBORMarketModelWithTenorRefinement Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 09.02.2004
 */
package net.finmath.montecarlo.interestrate.models;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

import net.finmath.exception.CalculationException;
import net.finmath.marketdata.model.AnalyticModel;
import net.finmath.marketdata.model.curves.DiscountCurve;
import net.finmath.marketdata.model.curves.ForwardCurve;
import net.finmath.montecarlo.RandomVariableFactory;
import net.finmath.montecarlo.RandomVariableFromArrayFactory;
import net.finmath.montecarlo.interestrate.CalibrationProduct;
import net.finmath.montecarlo.interestrate.TermStructureModel;
import net.finmath.montecarlo.interestrate.models.covariance.TermStructureCovarianceModel;
import net.finmath.montecarlo.interestrate.models.covariance.TermStructureCovarianceModelParametric;
import net.finmath.montecarlo.model.AbstractProcessModel;
import net.finmath.montecarlo.process.MonteCarloProcess;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;
import net.finmath.time.TimeDiscretizationFromArray;

/**
 * Implements a discretized Heath-Jarrow-Morton model / LIBOR market model with dynamic tenor refinement, see
 * https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2884699.
 *
 * 

* In its default case the class specifies a multi-factor LIBOR market model, that is * \( L_{j} = \frac{1}{T_{j+1}-T_{j}} ( exp(Y_{j}) - 1 ) \), where * \[ * dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} * \] *
* The model uses an AbstractLIBORCovarianceModel for the specification of * 1,j,...,λm,j) as a covariance model. * See {@link net.finmath.montecarlo.model.ProcessModel} for details on the implemented interface *

* The model uses an AbstractLIBORCovarianceModel as a covariance model. * If the covariance model is of type AbstractLIBORCovarianceModelParametric * a calibration to swaptions can be performed. *
* Note that λ may still depend on L (through a local volatility model). *
* The simulation is performed under spot measure, that is, the numeraire * is \( N(T_{i}) = \prod_{j=0}^{i-1} (1 + L(T_{j},T_{j+1};T_{j}) (T_{j+1}-T_{j})) \). * * The map properties allows to configure the model. The following keys may be used: *
    *
  • * liborCap: An optional Double value applied as a cap to the LIBOR rates. * May be used to limit the simulated valued to prevent values attaining POSITIVE_INFINITY and * numerical problems. To disable the cap, set liborCap to Double.POSITIVE_INFINITY. *
  • *
*
* * The main task of this class is to calculate the risk-neutral drift and the * corresponding numeraire given the covariance model. * * The calibration of the covariance structure is not part of this class. * * @author Christian Fries * @version 1.2 * @see net.finmath.montecarlo.process.MonteCarloProcess The interface for numerical schemes. * @see net.finmath.montecarlo.model.ProcessModel The interface for models provinding parameters to numerical schemes. * @see https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2884699 */ public class LIBORMarketModelWithTenorRefinement extends AbstractProcessModel implements TermStructureModel { public enum Driftapproximation { EULER, LINE_INTEGRAL, PREDICTOR_CORRECTOR } private final TimeDiscretization[] liborPeriodDiscretizations; private final Integer[] numberOfDiscretizationIntervals; private String forwardCurveName; private final AnalyticModel curveModel; private final ForwardCurve forwardRateCurve; private final DiscountCurve discountCurve; private final RandomVariableFactory randomVariableFactory = new RandomVariableFromArrayFactory(); private TermStructureCovarianceModel covarianceModel; // Cache for the numeraires, needs to be invalidated if process changes private final ConcurrentHashMap numeraires; private MonteCarloProcess numerairesProcess = null; /** * Creates a model for given covariance. * * Creates a discretized Heath-Jarrow-Morton model / LIBOR market model with dynamic tenor refinement, see * https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2884699. *
* If calibrationItems in non-empty and the covariance model is a parametric model, * the covariance will be replaced by a calibrate version of the same model, i.e., * the LIBOR Market Model will be calibrated. *
* The map properties allows to configure the model. The following keys may be used: *
    *
  • * liborCap: An optional Double value applied as a cap to the LIBOR rates. * May be used to limit the simulated valued to prevent values attaining POSITIVE_INFINITY and * numerical problems. To disable the cap, set liborCap to Double.POSITIVE_INFINITY. *
  • *
  • * calibrationParameters: Possible values: *
      *
    • * Map<String,Object> a parameter map with the following key/value pairs: *
        *
      • * accuracy: Double specifying the required solver accuracy. *
      • *
      • * maxIterations: Integer specifying the maximum iterations for the solver. *
      • *
      *
    • *
    *
  • *
* * @param liborPeriodDiscretizations A vector of tenor discretizations of the interest rate curve into forward rates (tenor structure), finest first. * @param numberOfDiscretizationIntervals A vector of number of periods to be taken from the liborPeriodDiscretizations. * @param analyticModel The associated analytic model of this model (containing the associated market data objects like curve). * @param forwardRateCurve The initial values for the forward rates. * @param discountCurve The discount curve to use. This will create an LMM model with a deterministic zero-spread discounting adjustment. * @param covarianceModel The covariance model to use. * @param calibrationProducts The vector of calibration items (a union of a product, target value and weight) for the objective function sum weight(i) * (modelValue(i)-targetValue(i). * @param properties Key value map specifying properties like measure and stateSpace. * @throws net.finmath.exception.CalculationException Thrown if the valuation fails, specific cause may be available via the cause() method. */ public LIBORMarketModelWithTenorRefinement( final TimeDiscretization[] liborPeriodDiscretizations, final Integer[] numberOfDiscretizationIntervals, final AnalyticModel analyticModel, final ForwardCurve forwardRateCurve, final DiscountCurve discountCurve, final TermStructureCovarianceModel covarianceModel, final CalibrationProduct[] calibrationProducts, final Map properties ) throws CalculationException { Map calibrationParameters = null; if(properties != null && properties.containsKey("calibrationParameters")) { calibrationParameters = (Map)properties.get("calibrationParameters"); } this.liborPeriodDiscretizations = liborPeriodDiscretizations; this.numberOfDiscretizationIntervals = numberOfDiscretizationIntervals; curveModel = analyticModel; this.forwardRateCurve = forwardRateCurve; this.discountCurve = discountCurve; this.covarianceModel = covarianceModel; // Perform calibration, if data is given if(calibrationProducts != null && calibrationProducts.length > 0) { TermStructureCovarianceModelParametric covarianceModelParametric = null; try { covarianceModelParametric = (TermStructureCovarianceModelParametric)covarianceModel; } catch(final Exception e) { throw new ClassCastException("Calibration is currently restricted to parametric covariance models (TermStructureCovarianceModelParametricInterface)."); } this.covarianceModel = covarianceModelParametric.getCloneCalibrated(this, calibrationProducts, calibrationParameters); } numeraires = new ConcurrentHashMap<>(); } /** * Return the numeraire at a given time. * * The numeraire is provided for interpolated points. If requested on points which are not * part of the tenor discretization, the numeraire uses a linear interpolation of the reciprocal * value. See ISBN 0470047224 for details. * * @param time Time time t for which the numeraire should be returned N(t). * @return The numeraire at the specified time as RandomVariable * @throws net.finmath.exception.CalculationException Thrown if the valuation fails, specific cause may be available via the cause() method. */ @Override public RandomVariable getNumeraire(final MonteCarloProcess process, final double time) throws CalculationException { final int timeIndex = liborPeriodDiscretizations[0].getTimeIndex(time); final TimeDiscretization liborPeriodDiscretization = liborPeriodDiscretizations[0]; if(timeIndex < 0) { // Interpolation of Numeraire: log linear interpolation. final int upperIndex = -timeIndex-1; final int lowerIndex = upperIndex-1; if(lowerIndex < 0) { throw new IllegalArgumentException("Numeraire requested for time " + time + ". Unsupported"); } final double alpha = (time-liborPeriodDiscretization.getTime(lowerIndex)) / (liborPeriodDiscretization.getTime(upperIndex) - liborPeriodDiscretization.getTime(lowerIndex)); RandomVariable numeraire = getNumeraire(process, liborPeriodDiscretization.getTime(upperIndex)).log().mult(alpha).add(getNumeraire(process, liborPeriodDiscretization.getTime(lowerIndex)).log().mult(1.0-alpha)).exp(); /* * Adjust for discounting, i.e. funding or collateralization */ if(discountCurve != null) { // This includes a control for zero bonds final double deterministicNumeraireAdjustment = numeraire.invert().getAverage() / discountCurve.getDiscountFactor(curveModel, time); numeraire = numeraire.mult(deterministicNumeraireAdjustment); } return numeraire; } /* * Calculate the numeraire, when time is part of liborPeriodDiscretization */ /* * Check if numeraire cache is values (i.e. process did not change) */ if(process != numerairesProcess) { numeraires.clear(); numerairesProcess = process; } /* * Check if numeraire is part of the cache */ RandomVariable numeraire = numeraires.get(timeIndex); if(numeraire == null) { /* * Calculate the numeraire for timeIndex */ if(timeIndex == 0) { numeraire = process.getStochasticDriver().getRandomVariableForConstant(1.0); } else { // Initialize to previous numeraire numeraire = getNumeraire(process, liborPeriodDiscretizations[0].getTime(timeIndex-1)); final double periodStart = liborPeriodDiscretizations[0].getTime(timeIndex-1); final double periodEnd = liborPeriodDiscretizations[0].getTime(timeIndex); final RandomVariable libor = getForwardRate(process, periodStart, periodStart, periodEnd); numeraire = numeraire.accrue(libor, periodEnd-periodStart); } // Cache the numeraire numeraires.put(timeIndex, numeraire); } /* * Adjust for discounting, i.e. funding or collateralization */ if(discountCurve != null) { // This includes a control for zero bonds final double deterministicNumeraireAdjustment = numeraire.invert().getAverage() / discountCurve.getDiscountFactor(curveModel, time); numeraire = numeraire.mult(deterministicNumeraireAdjustment); } return numeraire; } @Override public RandomVariable[] getInitialState(MonteCarloProcess process) { final RandomVariable[] initialStateRandomVariable = new RandomVariable[getNumberOfComponents()]; for(int componentIndex=0; componentIndexMeasure.SPOT
or Measure.TERMINAL - depending how the * model object was constructed. For Measure.TERMINAL the j-th entry of the return value is the random variable * \[ * \mu_{j}^{\mathbb{Q}^{P(T_{n})}}(t) \ = \ - \mathop{\sum_{l\geq j+1}}_{l\leq n-1} \frac{\delta_{l}}{1+\delta_{l} L_{l}(t)} (\lambda_{j}(t) \cdot \lambda_{l}(t)) * \] * and for Measure.SPOT the j-th entry of the return value is the random variable * \[ * \mu_{j}^{\mathbb{Q}^{N}}(t) \ = \ \sum_{m(t) < l\leq j} \frac{\delta_{l}}{1+\delta_{l} L_{l}(t)} (\lambda_{j}(t) \cdot \lambda_{l}(t)) * \] * where \( \lambda_{j} \) is the vector for factor loadings for the j-th component of the stochastic process (that is, the diffusion part is * \( \sum_{k=1}^m \lambda_{j,k} \mathrm{d}W_{k} \)). * * Note: The scalar product of the factor loadings determines the instantaneous covariance. If the model is written in log-coordinates (using exp as a state space transform), we find * \(\lambda_{j} \cdot \lambda_{l} = \sum_{k=1}^m \lambda_{j,k} \lambda_{l,k} = \sigma_{j} \sigma_{l} \rho_{j,l} \). * If the model is written without a state space transformation (in its orignial coordinates) then \(\lambda_{j} \cdot \lambda_{l} = \sum_{k=1}^m \lambda_{j,k} \lambda_{l,k} = L_{j} L_{l} \sigma_{j} \sigma_{l} \rho_{j,l} \). * * * @see net.finmath.montecarlo.interestrate.models.LIBORMarketModelWithTenorRefinement#getNumeraire(MonteCarloProcess, double) The calculation of the drift is consistent with the calculation of the numeraire in getNumeraire. * @see net.finmath.montecarlo.interestrate.models.LIBORMarketModelWithTenorRefinement#getFactorLoading(MonteCarloProcess, int, int, RandomVariable[]) The factor loading \( \lambda_{j,k} \). * * @param process The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one. * @param timeIndex Time index i for which the drift should be returned μ(ti). * @param realizationAtTimeIndex Time current forward rate vector at time index i which should be used in the calculation. * @return The drift vector μ(ti) as RandomVariableFromDoubleArray[] */ @Override public RandomVariable[] getDrift(final MonteCarloProcess process, final int timeIndex, final RandomVariable[] realizationAtTimeIndex, final RandomVariable[] realizationPredictor) { final double time = process.getTime(timeIndex); final double timeStep = process.getTimeDiscretization().getTimeStep(timeIndex); final double timeNext = process.getTime(timeIndex+1); final RandomVariable zero = process.getStochasticDriver().getRandomVariableForConstant(0.0); // Allocate drift vector and initialize to zero (will be used to sum up drift components) final RandomVariable[] drift = new RandomVariable[getNumberOfComponents()]; for(int componentIndex=0; componentIndex 0) { return weight2 / covarianceModel.getScaledTenorTime(periodStart, periodEnd) - weight1 / covarianceModel.getScaledTenorTime(periodStartPrevious, periodEndPrevious); } else { return weight2 / covarianceModel.getScaledTenorTime(periodStart, periodEnd); } } @Override public RandomVariable[] getFactorLoading(final MonteCarloProcess process, final int timeIndex, final int componentIndex, final RandomVariable[] realizationAtTimeIndex) { final RandomVariable zero = process.getStochasticDriver().getRandomVariableForConstant(0.0); if(componentIndex < getNumberOfLibors()) { final TimeDiscretization liborPeriodDiscretization = getLiborPeriodDiscretization(process.getTime(timeIndex)); final TimeDiscretization liborPeriodDiscretizationNext = getLiborPeriodDiscretization(process.getTime(timeIndex+1)); final double periodStart = liborPeriodDiscretizationNext.getTime(componentIndex); final double periodEnd = liborPeriodDiscretizationNext.getTime(componentIndex+1); final RandomVariable[] factorLoadingVector = covarianceModel.getFactorLoading(process.getTime(timeIndex), periodStart, periodEnd, liborPeriodDiscretization, realizationAtTimeIndex, this); return factorLoadingVector; } else { final RandomVariable[] zeros = new RandomVariable[process.getStochasticDriver().getNumberOfFactors()]; Arrays.fill(zeros, zero); return zeros; } } @Override public RandomVariable applyStateSpaceTransform(final MonteCarloProcess process, final int timeIndex, final int componentIndex, final RandomVariable randomVariable) { return randomVariable; } @Override public RandomVariable applyStateSpaceTransformInverse(final MonteCarloProcess process, final int timeIndex, final int componentIndex, final RandomVariable randomVariable) { return randomVariable; } @Override public RandomVariable getRandomVariableForConstant(final double value) { return randomVariableFactory.createRandomVariable(value); } private TimeDiscretization getLiborPeriodDiscretization(final double time) { final ArrayList tenorTimes = new ArrayList<>(); final double firstTime = liborPeriodDiscretizations[0].getTime(liborPeriodDiscretizations[0].getTimeIndexNearestLessOrEqual(time)); double lastTime = firstTime; tenorTimes.add(firstTime); for(int discretizationLevelIndex = 0; discretizationLevelIndex= liborPeriodDiscretizations[discretizationLevelIndex].getNumberOfTimes()) { break; } lastTime = liborPeriodDiscretizations[discretizationLevelIndex].getTime(tentorIntervalStartIndex+tenorInterval); // round to liborPeriodDiscretizations[0] lastTime = liborPeriodDiscretizations[0].getTime(liborPeriodDiscretizations[0].getTimeIndexNearestLessOrEqual(lastTime)); tenorTimes.add(lastTime); } } return new TimeDiscretizationFromArray(tenorTimes); } public RandomVariable getStateVariableForPeriod(final TimeDiscretization liborPeriodDiscretization, final RandomVariable[] stateVariables, final double periodStart, final double periodEnd) { int periodStartIndex = liborPeriodDiscretization.getTimeIndex(periodStart); int periodEndIndex = liborPeriodDiscretization.getTimeIndex(periodEnd); RandomVariable stateVariableSum = randomVariableFactory.createRandomVariable(0.0); if(periodStartIndex < 0) { periodStartIndex = -periodStartIndex-1; if(periodStartIndex >= liborPeriodDiscretization.getNumberOfTimes()) { throw new IllegalArgumentException(); } final RandomVariable stateVariable = stateVariables[periodStartIndex-1]; final double shortPeriodEnd = liborPeriodDiscretization.getTime(periodStartIndex); final double tenorRefinementWeight = getWeightForTenorRefinement(liborPeriodDiscretization.getTime(periodStartIndex-1), shortPeriodEnd, periodStart, shortPeriodEnd); final RandomVariable integratedVariance = stateVariables[getNumberOfLibors()+periodStartIndex-1]; final double tenor = covarianceModel.getScaledTenorTime(periodStart, shortPeriodEnd); stateVariableSum = stateVariableSum.addProduct(stateVariable.addProduct(integratedVariance, tenorRefinementWeight), tenor); } if(periodEndIndex < 0) { periodEndIndex = -periodEndIndex-1; final RandomVariable stateVariable = stateVariables[periodEndIndex-1]; final double shortPeriodStart = liborPeriodDiscretization.getTime(periodEndIndex-1); final double tenorRefinementWeight = getWeightForTenorRefinement(shortPeriodStart, liborPeriodDiscretization.getTime(periodEndIndex), shortPeriodStart, periodEnd); final RandomVariable integratedVariance = stateVariables[getNumberOfLibors()+periodEndIndex-1]; final double tenor = covarianceModel.getScaledTenorTime(shortPeriodStart, periodEnd); stateVariableSum = stateVariableSum.addProduct(stateVariable.addProduct(integratedVariance, tenorRefinementWeight), tenor); periodEndIndex--; } for(int periodIndex = periodStartIndex; periodIndex= liborPeriodDiscretization.getNumberOfTimes()) { throw new IllegalArgumentException(); } final RandomVariable stateVariable = process.getProcessValue(timeIndex, periodStartIndex-1); final double shortPeriodEnd = liborPeriodDiscretization.getTime(periodStartIndex); final double tenorRefinementWeight = getWeightForTenorRefinement(liborPeriodDiscretization.getTime(periodStartIndex-1), shortPeriodEnd, periodStart, shortPeriodEnd); final RandomVariable integratedVariance = getIntegratedVariance(process, timeIndex, liborPeriodDiscretization.getTime(periodStartIndex-1), liborPeriodDiscretization.getTime(periodStartIndex)); stateVariableSum = stateVariableSum.addProduct(stateVariable.addProduct(integratedVariance, tenorRefinementWeight), covarianceModel.getScaledTenorTime(periodStart, shortPeriodEnd)); } if(periodEndIndex < 0) { periodEndIndex = -periodEndIndex-1; final RandomVariable stateVariable = process.getProcessValue(timeIndex, periodEndIndex-1); final double shortPeriodStart = liborPeriodDiscretization.getTime(periodEndIndex-1); final double tenorRefinementWeight = getWeightForTenorRefinement(shortPeriodStart, liborPeriodDiscretization.getTime(periodEndIndex), shortPeriodStart, periodEnd); final RandomVariable integratedVariance = getIntegratedVariance(process, timeIndex, liborPeriodDiscretization.getTime(periodEndIndex-1), liborPeriodDiscretization.getTime(periodEndIndex)); stateVariableSum = stateVariableSum.addProduct(stateVariable.addProduct(integratedVariance, tenorRefinementWeight), covarianceModel.getScaledTenorTime(shortPeriodStart,periodEnd)); periodEndIndex--; } for(int periodIndex = periodStartIndex; periodIndex properties = new HashMap(); properties.put("measure", measure.name()); properties.put("stateSpace", stateSpace.name()); return new LIBORMarketModelWithTenorRefinement(getLiborPeriodDiscretization(), getForwardRateCurve(), getDiscountCurve(), covarianceModel, new CalibrationProduct[0], properties); } catch (CalculationException e) { return null; } */ } @Override public AnalyticModel getAnalyticModel() { return curveModel; } @Override public DiscountCurve getDiscountCurve() { return discountCurve; } @Override public ForwardCurve getForwardRateCurve() { return forwardRateCurve; } @Override public TermStructureModel getCloneWithModifiedData(final Map dataModified) throws CalculationException { final CalibrationProduct[] calibrationItems = null; final Map properties = null; TermStructureCovarianceModel covarianceModel = this.covarianceModel; if(dataModified.containsKey("covarianceModel")) { covarianceModel = (TermStructureCovarianceModel)dataModified.get("covarianceModel"); } return new LIBORMarketModelWithTenorRefinement(liborPeriodDiscretizations, numberOfDiscretizationIntervals, curveModel, forwardRateCurve, discountCurve, covarianceModel, calibrationItems, properties); } /** * Returns the term structure covariance model. * * @return the term structure covariance model. */ public TermStructureCovarianceModel getCovarianceModel() { return covarianceModel; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy