All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.montecarlo.interestrate.models.covariance.HullWhiteLocalVolatilityModel Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 26.05.2013
 */
package net.finmath.montecarlo.interestrate.models.covariance;

import java.util.Map;

import net.finmath.exception.CalculationException;
import net.finmath.stochastic.RandomVariable;

/**
 * Special variant of a blended model (or displaced diffusion model)
 * build on top of a standard covariance model
 * using the special function corresponding to the Hull-White local volatility.
 *
 * The model constructed for the i-th factor loading is
 * (1+Li(t) d) Fi(t)
 * where d is a constant (the period length), Li is
 * the realization of the i-th component of the stochastic process and
 * Fi is the factor loading from the given covariance model.
 *
 * If this model is combined with an exponential decay volatility model
 * LIBORVolatilityModelTwoParameterExponentialForm, then
 * the resulting LIBOR Market model corresponds to a Hull-White short rate model
 * (with constant short rate volatility and mean reversion).
 *
 * The parameter of this model is the parameter vector of the given base covariance model.
 *
 * @author Christian Fries
 * @version 1.0
 */
public class HullWhiteLocalVolatilityModel extends AbstractLIBORCovarianceModelParametric {

	private static final long serialVersionUID = -4182083344704425769L;

	private final AbstractLIBORCovarianceModelParametric covarianceModel;
	private final double periodLength;

	/**
	 * The model constructed for the i-th factor loading is
	 * (1+Li(t) d) Fi(t)
	 * where d is a constant (the period length), Li is
	 * the realization of the i-th component of the stochastic process and
	 * Fi is the factor loading from the given covariance model.
	 *
	 * The parameter of this model is the parameter vector of the given base covariance model.
	 *
	 * @param covarianceModel The given covariance model specifying the factor loadings F.
	 * @param periodLength The parameter d in the formula above.
	 */
	public HullWhiteLocalVolatilityModel(final AbstractLIBORCovarianceModelParametric covarianceModel, final double periodLength) {
		super(covarianceModel.getTimeDiscretization(), covarianceModel.getLiborPeriodDiscretization(), covarianceModel.getNumberOfFactors());
		this.covarianceModel	= covarianceModel;
		this.periodLength		= periodLength;
	}

	@Override
	public Object clone() {
		return new HullWhiteLocalVolatilityModel((AbstractLIBORCovarianceModelParametric) covarianceModel.clone(), periodLength);
	}

	/**
	 * Returns the base covariance model, i.e., the model providing the factor loading F.
	 *
	 * @return The base covariance model.
	 */
	public AbstractLIBORCovarianceModelParametric getBaseCovarianceModel() {
		return covarianceModel;
	}

	@Override
	public double[] getParameterAsDouble() {
		return covarianceModel.getParameterAsDouble();
	}

	@Override
	public AbstractLIBORCovarianceModelParametric getCloneWithModifiedParameters(final double[] parameters) {
		return new HullWhiteLocalVolatilityModel(covarianceModel.getCloneWithModifiedParameters(parameters), periodLength);
	}

	@Override
	public RandomVariable[] getFactorLoading(final int timeIndex, final int component, final RandomVariable[] realizationAtTimeIndex) {
		final RandomVariable[] factorLoading = covarianceModel.getFactorLoading(timeIndex, component, realizationAtTimeIndex);

		if(realizationAtTimeIndex != null && realizationAtTimeIndex[component] != null) {
			final RandomVariable localVolatilityFactor = realizationAtTimeIndex[component].mult(periodLength).add(1.0);
			for (int factorIndex = 0; factorIndex < factorLoading.length; factorIndex++) {
				factorLoading[factorIndex] = factorLoading[factorIndex].mult(localVolatilityFactor);
			}
		}

		return factorLoading;
	}

	@Override
	public RandomVariable getFactorLoadingPseudoInverse(final int timeIndex, final int component, final int factor, final RandomVariable[] realizationAtTimeIndex) {
		throw new UnsupportedOperationException();
	}

	@Override
	public AbstractLIBORCovarianceModelParametric getCloneWithModifiedData(final Map dataModified)
			throws CalculationException {
		double periodLength = this.periodLength;
		AbstractLIBORCovarianceModelParametric covarianceModel = this.covarianceModel;

		if(dataModified != null) {
			if(!dataModified.containsKey("covarianceModel")) {
				covarianceModel = covarianceModel.getCloneWithModifiedData(dataModified);
			}

			// Explicitly passed covarianceModel has priority
			covarianceModel = (AbstractLIBORCovarianceModelParametric)dataModified.getOrDefault("covarianceModel", covarianceModel);
			periodLength = (double)dataModified.getOrDefault("periodLength", periodLength);
		}

		final AbstractLIBORCovarianceModelParametric newModel = new HullWhiteLocalVolatilityModel(covarianceModel, periodLength);
		return newModel;
	}
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy