net.finmath.climate.models.dice.submodels.EvolutionOfTemperature Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.climate.models.dice.submodels;
import java.util.function.Function;
import net.finmath.functions.LinearAlgebra;
import net.finmath.time.TimeDiscretization;
import net.finmath.util.Cached;
import net.finmath.util.TriFunction;
/**
*
* The evolution of the temperature \( \mathrm{d}T(t) = \left( \Gamma_{T} T(t) + \xi \cdot F(t) \right) \mathrm{d}t \).
*
* The unit of \( T \) is K (Kelvin).
*
* This is a function of timeIndex, previous temperature and forcing.
*
* The evolution is modelled as \( \mathrm{d}T(t) = \left( \Gamma_{T} T(t) + \xi \cdot F(t) \right) \mathrm{d}t \).
* With the given {@link TimeDiscretization} it is approximated via an Euler-step
* \(
* T(t_{i+1}) = \Phi T(t_{i}) + (forcingToTemp \cdot (forcing, 0) \cdot \Delta t_{i}
* \)
* where \( \Phi = (1 + \Gamma_{T} \Delta t_{i}) \).
*
* @author Christian Fries
*/
public class EvolutionOfTemperature implements TriFunction {
private static double forcingToTemp5YDefault = 0.1005; // (climate sensitivity) sometimes called xi1 or c1 (original parameter was per 5 year)
private static double[][] transitionMatrix5YDefault;
static {
final double fco22x = 3.6813; // Forcings of equilibrium CO2 doubling (Wm-2)
final double t2xco2 = 3.1; // Equilibrium temp impact (°C per doubling CO2)
final double c3 = 0.088; // Transfer coefficient upper to lower stratum
final double c4 = 0.025;
final double phi11 = 1-forcingToTemp5YDefault*((fco22x/t2xco2) + c3);
final double phi12 = forcingToTemp5YDefault*c3;
final double phi21 = c4;
final double phi22 = 1-c4;
transitionMatrix5YDefault = new double[][] { new double[] { phi11, phi12 }, new double[] { phi21, phi22 } };
}
private final TimeDiscretization timeDiscretization;
private final Function transitionMatrices; // phi in [i][j] (i = row, j = column)
private final double forcingToTemp;
/**
* @param timeDiscretization The time discretization.
* @param transitionMatrices Transition matrix \( \Phi \) for each time step.
* @param forcingToTemp The scaling coefficient for the external forcing to temperature change per year (this is per 1Y).
*/
public EvolutionOfTemperature(TimeDiscretization timeDiscretization, Function transitionMatrices, double forcingToTemp) {
super();
this.timeDiscretization = timeDiscretization;
this.transitionMatrices = transitionMatrices;
this.forcingToTemp = forcingToTemp;
}
public EvolutionOfTemperature(TimeDiscretization timeDiscretization) {
Function timeSteps = ((Integer timeIndex) -> { return timeDiscretization.getTimeStep(timeIndex); });
this.timeDiscretization = timeDiscretization;
transitionMatrices = timeSteps.andThen(Cached.of(timeStep -> timeStep == 5.0 ? transitionMatrix5YDefault : LinearAlgebra.matrixPow(transitionMatrix5YDefault, (Double)timeStep/5.0)));
this.forcingToTemp = forcingToTemp5YDefault/5; // Rescale to per 1 Y
}
@Override
public Temperature2DScalar apply(Integer timeIndex, Temperature2DScalar temperature, Double forcing) {
final double timeStep = timeDiscretization.getTimeStep(timeIndex);
final double[] temperatureNext = LinearAlgebra.multMatrixVector(transitionMatrices.apply(timeIndex), temperature.getAsDoubleArray());
temperatureNext[0] += forcingToTemp * forcing * timeStep;
return new Temperature2DScalar(temperatureNext);
}
public TimeDiscretization getTimeDiscretization() {
return timeDiscretization;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy