net.finmath.equities.models.SviVolatilitySmile Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.equities.models;
import java.time.LocalDate;
import java.util.ArrayList;
import java.util.Collections;
import java.util.stream.Collectors;
/**
* Class that implements the smile-specific parts of the SVI volatility parametrization
* from Gatheral's 2013 paper.
*
* @author Andreas Grotz
*/
public class SviVolatilitySmile {
private final double a;
private final double b;
private final double rho;
private final double m;
private final double sigma;
private final LocalDate smileDate;
public SviVolatilitySmile(LocalDate date, double a, double b, double rho, double m, double sigma) {
this.a = a;
this.b = b;
this.rho = rho;
this.m = m;
this.sigma = sigma;
smileDate = date;
validate();
}
public static double sviTotalVariance(
double logStrike, double a, double b, double rho, double m, double sigma)
{
final var kShifted = logStrike - m;
return a + b * (rho * kShifted + Math.sqrt(kShifted * kShifted + sigma * sigma));
}
public static double sviVolatility(
double logStrike, double a, double b, double rho, double m, double sigma, double ttm)
{
return Math.sqrt(sviTotalVariance(logStrike, a, b, rho, m, sigma) / ttm);
}
public static double[] sviInitialGuess(ArrayList logStrikes, ArrayList totalVariances)
{
// Use the Jump Wing parametrization from Gatheral's 2013 paper to derive an initial guess
final var nPoints = logStrikes.size();
assert nPoints >= 5 : "An initial guess for SVI is not sensible with less than 5 points.";
final var minIndex = totalVariances.indexOf(Collections.min(totalVariances));
final var k0 = logStrikes.get(minIndex);
if(k0 == 0.0)
{
final var atmIndex = logStrikes.indexOf(0.0);
final var w = totalVariances.get(atmIndex);
final var d2wdk2 = 2 * (totalVariances.get(atmIndex + 1) * totalVariances.get(atmIndex - 1) - 2 * w)
/ (Math.pow(logStrikes.get(atmIndex + 1), 2) + Math.pow(logStrikes.get(atmIndex - 1), 2));
final var c = (totalVariances.get(nPoints - 1) - totalVariances.get(nPoints - 2))
/ (logStrikes.get(nPoints - 1) - logStrikes.get(nPoints - 2));
final var p = (totalVariances.get(0) - totalVariances.get(1))
/ (logStrikes.get(1) - logStrikes.get(0));
final var b = 0.5 * (c + p);
final var rho = 1 - 2 * p / (c + p);
final var m = b * (1 - rho * rho) * Math.abs(rho) / d2wdk2;
final var sigma = m * Math.sqrt(1 - rho * rho) / rho;
final var a = w - b * sigma * Math.sqrt(1 - rho * rho);
return new double[] {a, b, rho, m, sigma};
}
else
{
final var wMin = totalVariances.get(minIndex);
double w, dwdk;
if (logStrikes.contains(0.0))
{
final var atmIndex = logStrikes.indexOf(0.0);
w = totalVariances.get(atmIndex);
dwdk = 0.5 * ((totalVariances.get(atmIndex + 1) - w) / (logStrikes.get(atmIndex + 1))
+ (totalVariances.get(atmIndex - 1) - w) / (logStrikes.get(atmIndex - 1)));
}
else
{
final var maxNegIndex = logStrikes.indexOf(
Collections.max(logStrikes.stream().filter(s -> s < 0.0).collect(Collectors.toList())));
dwdk = (totalVariances.get(maxNegIndex + 1) - totalVariances.get(maxNegIndex))
/ (logStrikes.get(maxNegIndex + 1) - logStrikes.get(maxNegIndex));
w = totalVariances.get(maxNegIndex) - dwdk * logStrikes.get(maxNegIndex);
}
final var c = (totalVariances.get(nPoints - 1) - totalVariances.get(nPoints - 2))
/ (logStrikes.get(nPoints - 1) - logStrikes.get(nPoints - 2));
final var p = (totalVariances.get(0) - totalVariances.get(1))
/ (logStrikes.get(1) - logStrikes.get(0));
final var b = 0.5 * (c + p);
final var rho = 1 - 2 * p / (c + p);
final var beta = rho - dwdk / b;
final var alpha = Math.signum(beta) * Math.sqrt(1 / beta / beta - 1);
final var m = (w - wMin) / b / (Math.signum(alpha) * Math.sqrt(1 + alpha * alpha)
- alpha * Math.sqrt(1 - rho * rho) - rho);
final var sigma = alpha * m;
final var a = wMin - b * sigma * Math.sqrt(1 - rho * rho);
return new double[] {a, b, rho, m, sigma};
}
}
public void validate()
{
assert getB() >= 0.0;
assert Math.abs(getRho()) < 1.0;
assert getSigma() > 0.0;
assert getA() + getB() * getSigma() * Math.sqrt(1.0 - getRho() * getRho()) >= 0.0;
}
public double getTotalVariance(double logStrike)
{
return sviTotalVariance(logStrike, getA(), getB(), getRho(), getM(), getSigma());
}
public double getTotalVariance(double strike, double forward)
{
return sviTotalVariance(Math.log(strike/forward), getA(), getB(), getRho(), getM(), getSigma());
}
public double getVolatility(double strike, double forward, double timeToExpiry)
{
return sviVolatility(Math.log(strike/forward), getA(), getB(), getRho(), getM(), getSigma(), timeToExpiry);
}
public LocalDate getSmileDate() {
return smileDate;
}
public double getSigma() {
return sigma;
}
public double getM() {
return m;
}
public double getRho() {
return rho;
}
public double getB() {
return b;
}
public double getA() {
return a;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy