net.finmath.integration.PiecewiseContantDoubleUnaryOperator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.integration;
import java.util.Arrays;
import java.util.List;
import java.util.function.DoubleUnaryOperator;
import java.util.function.Function;
import org.apache.commons.lang3.ArrayUtils;
import org.apache.commons.lang3.Validate;
/**
* A piecewise constant {@link java.util.function.DoubleUnaryOperator} \( f : \mathbb{R} \rightarrow \mathbb{R} \)
* with exact calculation of the integral \( \int_{a}^{b} f(x) dx \) for given bounds \( a, b \).
*
* The summation uses Kahan error correction.
*
* For convenience the class can act as {@link java.util.function.DoubleUnaryOperator} specialization
* and as {@link java.util.function.Function}.
*
* @author Christian Fries
*/
public class PiecewiseContantDoubleUnaryOperator implements DoubleUnaryOperator, Function {
private final double[] intervalRightPoints;
private final double[] values;
/**
* Construct a piecewise constant {@link java.util.function.DoubleUnaryOperator}
* \( f : \mathbb{R} \rightarrow \mathbb{R} \).
*
* @param intervalRightPoints Array of length \( n \) with the right hand points \( x_{i} \) of the intervals \( (x_{i-1},x_{i}] \) on which we have values.
* @param values Array of length \( n+1 \) with the values \( f_{i} \) on the intervals \( (x_{i-1},x_{i}] \) where:
*
* - the first value \( f_{0} \) in this array corresponds to the value on \( (-\infty,x_{0}] \)
* - the last value \( f_{n} \) in this array corresponds to the value on \( (x_{n-1},\infty) \)
*
*/
public PiecewiseContantDoubleUnaryOperator(double[] intervalRightPoints, double[] values) {
super();
Validate.notNull(intervalRightPoints, "Argument intervalRightPoints must not be null.");
Validate.notNull(values, "Argument values must not be null.");
Validate.isTrue(values.length == intervalRightPoints.length+1, "Length of values must equal length of intervalRightPoints + 1.");
this.intervalRightPoints = intervalRightPoints;
this.values = values;
}
/**
* Construct a piecewise constant {@link java.util.function.DoubleUnaryOperator}
* \( f : \mathbb{R} \rightarrow \mathbb{R} \).
*
* @param intervalRightPoints List of length \( n \) with the right hand points \( x_{i} \) of the intervals \( (x_{i-1},x_{i}] \) on which we have values.
* @param values List of length \( n+1 \) with the values \( f_{i} \) on the intervals \( (x_{i-1},x_{i}] \) where:
*
* - the first value \( f_{0} \) in this array corresponds to the value on \( (-\infty,x_{0}] \)
* - the last value \( f_{n} \) in this array corresponds to the value on \( (x_{n-1},\infty) \)
*
*/
public PiecewiseContantDoubleUnaryOperator(List intervalRightPoints, List values) {
this(
ArrayUtils.toPrimitive(intervalRightPoints.toArray(new Double[intervalRightPoints.size()])),
ArrayUtils.toPrimitive(values.toArray(new Double[values.size()]))
);
}
/**
* Get the integral \( \int_{a}^{b} g(f(x)) dx \) of this function \( f \) plugged into a given function \( g \)
* for given bounds \( a, b \).
*
* @param lowerBound The lower bound a.
* @param upperBound The upper bound b.
* @param operator The given function g.
* @return The integral \( \int_{a}^{b} g(f(x)) dx \).
*/
public double getIntegral(double lowerBound, double upperBound, DoubleUnaryOperator operator) {
if(lowerBound == upperBound) {
return 0.0;
}
if(lowerBound > upperBound) {
return -getIntegral(upperBound, lowerBound);
}
int indexUpperOfLowerBound = Arrays.binarySearch(intervalRightPoints, lowerBound);
if(indexUpperOfLowerBound < 0) {
indexUpperOfLowerBound = -indexUpperOfLowerBound-1;
}
int indexLowerOfUpperBound = Arrays.binarySearch(intervalRightPoints, upperBound);
if(indexLowerOfUpperBound < 0) {
indexLowerOfUpperBound = -indexLowerOfUpperBound-1;
}
indexLowerOfUpperBound--;
if(indexLowerOfUpperBound < indexUpperOfLowerBound) {
// lower and upper bound fall in the same interval
return operator.applyAsDouble(values[indexUpperOfLowerBound]) * (upperBound-lowerBound);
}
else {
// running error of error correction
double error = 0.0;
// right part of interval where lower bound is
double integral = operator.applyAsDouble(values[indexUpperOfLowerBound]) * (intervalRightPoints[indexUpperOfLowerBound]-lowerBound);
// in between intervals (if any)
for(int i=indexUpperOfLowerBound; i operator) {
return getIntegral(lowerBound, upperBound, toPrimitive(operator));
}
private DoubleUnaryOperator toPrimitive(Function operator) {
final DoubleUnaryOperator doubleUnaryOperator = x -> operator.apply(x);
return doubleUnaryOperator;
}
/**
* Get the integral \( \int_{a}^{b} f(x) dx \) of this function \( f \)
* for given bounds \( a, b \).
*
* @param lowerBound The lower bound a.
* @param upperBound The upper bound b.
* @return The integral \( \int_{a}^{b} f(x) dx \).
*/
public double getIntegral(double lowerBound, double upperBound) {
return getIntegral(lowerBound, upperBound, DoubleUnaryOperator.identity());
}
/**
* Get the value of this unary operator \( f \) at the given argument.
*
* @param operand The given argument.
* @return The value \( f(x) \).
*/
@Override
public double applyAsDouble(double operand) {
int index = Arrays.binarySearch(intervalRightPoints, operand);
if (index < 0) {
index = -index - 1;
}
return values[index];
}
/**
* Get the value of this function \( f \) at the given argument.
*
* @param value The given argument.
* @return The value \( f(x) \).
*/
@Override
public Double apply(Double value) {
return applyAsDouble(value);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy