net.finmath.montecarlo.VarianceGammaProcess Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.montecarlo;
import java.io.Serializable;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;
/**
* Implementation of a time-discrete n-dimensional Variance Gamma process via Brownian subordination through
* a Gamma Process.
*
* To simulate the Variance Gamma process with paramters \( (\sigma,\theta,\nu) \) we proceed in two steps:
*
* - we simulate the path of a GammaProcess with parameters \( \frac{1}{\nu} and \nu \)
* - use the GammaProcess as a subordinator for a Brownian motion with drift
*
*
* \( \theta \Gamma(t) + \sigma W(\Gamma(t)) \)
*
* The class is immutable and thread safe. It uses lazy initialization.
*
* @author Alessandro Gnoatto
* @version 1.0
*/
public class VarianceGammaProcess implements IndependentIncrements, Serializable{
private static final long serialVersionUID = -338038617011804530L;
private final double sigma;
private final double nu;
private final double theta;
private final TimeDiscretization timeDiscretization;
private final int numberOfFactors;
private final int numberOfPaths;
private final int seed;
private GammaProcess myGammaProcess;
private BrownianMotion myBrownianMotion;
private final RandomVariableFactory randomVariableFactory = new RandomVariableFromArrayFactory();
private transient RandomVariable[][] varianceGammaIncrements;
public VarianceGammaProcess(final double sigma, final double nu, final double theta,
final TimeDiscretization timeDiscretization,
final int numberOfFactors, final int numberOfPaths, final int seed) {
super();
this.sigma = sigma;
this.nu = nu;
this.theta = theta;
this.timeDiscretization = timeDiscretization;
this.numberOfFactors = numberOfFactors;
this.numberOfPaths = numberOfPaths;
this.seed = seed;
varianceGammaIncrements = null;
}
@Override
public RandomVariable getIncrement(final int timeIndex, final int factor) {
// Thread safe lazy initialization
synchronized(this) {
if(varianceGammaIncrements == null) {
doGenerateVarianceGammaIncrements();
}
}
/*
* For performance reasons we return directly the stored data (no defensive copy).
* We return an immutable object to ensure that the receiver does not alter the data.
*/
return varianceGammaIncrements[timeIndex][factor];
}
/**
*Lazy initialization of gammaIncrement. Synchronized to ensure thread safety of lazy init.
*/
private void doGenerateVarianceGammaIncrements() {
if(varianceGammaIncrements != null) {
return;
}
myGammaProcess =
new GammaProcess(timeDiscretization,numberOfFactors,numberOfPaths,seed,1/nu,nu);
myBrownianMotion =
new BrownianMotionFromMersenneRandomNumbers(timeDiscretization,numberOfFactors,numberOfPaths,seed+1);
varianceGammaIncrements = new RandomVariable[timeDiscretization.getNumberOfTimeSteps()][numberOfFactors];
/*
* Generate variance gamma distributed independent increments.
*
* Since we already have a Brownian motion and a Gamma process at our disposal,
* we are simply combining them.
*/
for(int timeIndex = 0; timeIndex < timeDiscretization.getNumberOfTimeSteps(); timeIndex++) {
// Generate uncorrelated Gamma distributed increment
for(int factor=0; factor
© 2015 - 2025 Weber Informatics LLC | Privacy Policy