net.finmath.montecarlo.interestrate.models.funding.FundingCapacityWithMemory Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.montecarlo.interestrate.models.funding;
import java.util.Map;
import java.util.Set;
import java.util.SortedMap;
import net.finmath.exception.CalculationException;
import net.finmath.montecarlo.interestrate.TermStructureMonteCarloSimulationModel;
import net.finmath.montecarlo.interestrate.products.components.AbstractProductComponent;
import net.finmath.stochastic.RandomVariable;
import net.finmath.stochastic.Scalar;
/**
* Models the notional dependent survival probability and default compensation
* of a funding capacity (funding provider)
* using a piecewise constant function for the instantaneous survival probability.
*
* The piecewise constant instantaneous survival probability has to be provided
* by a SortedMap<Double, Double> instantaneouseSurvivalProbability.
*
* This map defines the mapping \( x_{i} \mapsto q_{i} \). Defining
* \[ q(x) = q_{i} \text{\ for\ } x \in (x_{i-1}-x_{i}] \] the
* getDefaultFactors
method of this class calculates
* for a given argument \( (t,x) \):
*
* -
* the effective survival probability
*
* -
* \[ \frac{1}{x} \int_{a}^{a+x} q(\xi) \mathrm{d}\xi \],
*
* where a denotes the current level of fund provided by this capacity, and
*
* -
* the effective default compensation factor R, such that
*
* -
* \[ \frac{1}{x} \int_{a}^{a+R x} q(\xi) \mathrm{d}\xi \ = \ 1 \],
*
*
*
* Important:
*
*
* -
* Since the class keeps track of past fundings
* used, it is mandatory that the factors are calculated in
* time-sequential order.
*
* -
* The map instantaneouseSurvivalProbability \( x_{i} \mapsto q_{i} \)
* defines the survival probability for \( (x_{i-1},x_{i} \).
*
* For funding above the last discretization point \( x_{n-1} \) a value of \( q_{n} = 0 \)
* is used.
* Hence, to avoid this extrapolation, set a very large value of \( x_{n-1} \), e.g.
* Double.MAX_VALLUE
*
*
*
* @author Christian Fries
*/
public class FundingCapacityWithMemory extends AbstractProductComponent implements FundingCapacity {
private static final long serialVersionUID = 6863200178588875665L;
private final SortedMap instantaneousSurvivalProbability;
private Double currentTime;
private RandomVariable currentCapacity;
public FundingCapacityWithMemory(String currency, RandomVariable intialCapacity, SortedMap instantaneouseSurvivalProbability) {
super(currency);
this.currentTime = 0.0;
this.currentCapacity = intialCapacity;
this.instantaneousSurvivalProbability = instantaneouseSurvivalProbability;
}
/**
* Apply a new funding requirement to this funding capacity
* and return the associated DefaultFactors
.
*
* @param time The time at which the funding is required.
* @param fundingRequirement The required funding.
* @return A DefaultFactors
that reflects the amount that has to be contracted to secure the funding.
*/
@Override
public DefaultFactors getDefaultFactors(double time, RandomVariable fundingRequirement) {
/*
* Determine integral bounds (synchronized for thread safety)
*/
RandomVariable fundingIntervalLeft, fundingIntervalRight;
synchronized (currentTime) {
if(time < currentTime) {
throw new IllegalStateException("The method must be called in time-successive order.");
}
currentTime = time;
/*
* The fundingRequirement may be negative, in which case funding is returned to the provider.
* We first calculate the lower and upper integral bounds from the fundingRequirement.
* The integral calculated is always positive, since we require only the factor.
*/
final RandomVariable newCapacity = currentCapacity.add(fundingRequirement);
fundingIntervalLeft = currentCapacity.cap(newCapacity); // min(current,new)
fundingIntervalRight = currentCapacity.floor(newCapacity); // max(current,new)
currentCapacity = newCapacity;
}
RandomVariable integratedSurvivalProbability = new Scalar(0.0);
RandomVariable integratedDefaultCompensation = new Scalar(0.0);
double previousFundingLevel = -Double.MAX_VALUE;
double previousProvidedLevel = -Double.MAX_VALUE;
for(final Map.Entry entry : instantaneousSurvivalProbability.entrySet()) {
final double fundingLevel = entry.getKey();
final double survivalProbability = entry.getValue();
final double providedLevel = Math.max(previousProvidedLevel,0) + (fundingLevel-Math.max(previousFundingLevel,0)) * survivalProbability;
integratedDefaultCompensation = integratedDefaultCompensation.add(
fundingIntervalRight.cap(providedLevel)
.sub(fundingIntervalLeft.floor(previousProvidedLevel))
.floor(0.0)
.div(survivalProbability));
integratedSurvivalProbability = integratedSurvivalProbability.add(
fundingIntervalRight.cap(fundingLevel)
.sub(fundingIntervalLeft.floor(previousFundingLevel))
.floor(0.0)
.mult(survivalProbability));
previousFundingLevel = fundingLevel;
previousProvidedLevel = providedLevel;
}
// The cap is used to map to avoid 0*infty to zero.
final RandomVariable oneOverFundingAmount = fundingIntervalRight.sub(fundingIntervalLeft).invert().cap(Double.MAX_VALUE);
integratedSurvivalProbability = integratedSurvivalProbability.mult(oneOverFundingAmount);
integratedDefaultCompensation = integratedDefaultCompensation.mult(oneOverFundingAmount);
return new DefaultFactors(integratedSurvivalProbability, integratedDefaultCompensation);
}
@Deprecated
public RandomVariable getDefaultCompensationForRequiredFunding(double time, RandomVariable fundingRequirement) {
RandomVariable fundingIntervalLeft, fundingIntervalRight;
synchronized (currentTime) {
if(time < currentTime) {
throw new IllegalStateException("The method must be called in time-successive order.");
}
currentTime = time;
/*
* The fundingRequirement may be negative, in which case funding is retured to the provides.
* We first calculate the lower and upper integral bounds from the fundingRequirement.
* The integral calculated is always positive, the correct sign of the integral will be checked later.
*/
final RandomVariable newCapacity = currentCapacity.add(fundingRequirement);
fundingIntervalLeft = currentCapacity.cap(newCapacity); // min(current,new)
fundingIntervalRight = currentCapacity.floor(newCapacity); // max(current,new)
currentCapacity = newCapacity;
}
RandomVariable integratedSurvivalProbability = new Scalar(0.0);
double previousFundingLevel = -Double.MAX_VALUE;
final double previousProvidedLevel = -Double.MAX_VALUE;
for(final Map.Entry entry : instantaneousSurvivalProbability.entrySet()) {
final double fundingLevel = entry.getKey();
final double survivalProbability = entry.getValue();
final double providedLevel = Math.max(previousProvidedLevel,0) + (fundingLevel-Math.max(previousFundingLevel,0)) * survivalProbability;
integratedSurvivalProbability = integratedSurvivalProbability.add(
fundingIntervalRight.cap(providedLevel)
.sub(fundingIntervalLeft.floor(previousProvidedLevel))
.floor(0.0)
.div(survivalProbability));
previousFundingLevel = fundingLevel;
}
integratedSurvivalProbability = integratedSurvivalProbability.div(fundingIntervalRight.sub(fundingIntervalLeft));
return integratedSurvivalProbability;
}
@Deprecated
public RandomVariable getSurvivalProbabilityRequiredFunding(double time, RandomVariable fundingRequirement) {
RandomVariable fundingIntervalLeft, fundingIntervalRight;
synchronized (currentTime) {
if(time < currentTime) {
throw new IllegalStateException("The method getSurvivalProbabilityRequiredFunding must be called in successive order.");
}
currentTime = time;
/*
* The fundingRequirement may be negative, in which case funding is retured to the provides.
* We first calculate the lower and upper integral bounds from the fundingRequirement.
* The integral calculated is always positive, the correct sign of the integral will be checked later.
*/
final RandomVariable newCapacity = currentCapacity.add(fundingRequirement);
fundingIntervalLeft = currentCapacity.cap(newCapacity); // min(current,new)
fundingIntervalRight = currentCapacity.floor(newCapacity); // max(current,new)
currentCapacity = newCapacity;
}
RandomVariable integratedSurvivalProbability = new Scalar(0.0);
double previousFundingLevel = -Double.MAX_VALUE;
for(final Map.Entry entry : instantaneousSurvivalProbability.entrySet()) {
final double fundingLevel = entry.getKey();
final double survivalProbability = entry.getValue();
integratedSurvivalProbability = integratedSurvivalProbability.add(
fundingIntervalRight.cap(fundingLevel)
.sub(fundingIntervalLeft.floor(previousFundingLevel))
.floor(0.0)
.mult(survivalProbability));
previousFundingLevel = fundingLevel;
}
integratedSurvivalProbability = integratedSurvivalProbability.div(fundingIntervalRight.sub(fundingIntervalLeft));
return integratedSurvivalProbability;
}
public RandomVariable getCurrentFundingLevel() {
return currentCapacity;
}
@Override
public Set queryUnderlyings() {
return null;
}
@Override
public RandomVariable getValue(double evaluationTime, TermStructureMonteCarloSimulationModel model) throws CalculationException {
throw new UnsupportedOperationException();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy