net.finmath.montecarlo.process.LinearInterpolatedTimeDiscreteProcess Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 28 Feb 2015
*/
package net.finmath.montecarlo.process;
import java.util.HashMap;
import java.util.Map;
import java.util.function.DoubleUnaryOperator;
import net.finmath.exception.CalculationException;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;
import net.finmath.time.TimeDiscretizationFromArray;
/**
* A linear interpolated time discrete process, that is, given a collection of tuples
* ({@link java.lang.Double}, {@link net.finmath.stochastic.RandomVariable}) representing
* realizations \( X(t_{i}) \) this class implements
* the {@link Process} and creates a stochastic process \( t \mapsto X(t) \)
* where
* \[
* X(t) = \frac{t_{i+1} - t}{t_{i+1}-t_{i}} X(t_{i}) + \frac{t - t_{i}}{t_{i+1}-t_{i}} X(t_{i+1})
* \]
* with \( t_{i} \leq t \leq t_{i+1} \).
*
* Note: this is the interpolation scheme used in the convergence of the Euler-Maruyama scheme.
*
* @author Christian Fries
* @version 1.0
*/
public class LinearInterpolatedTimeDiscreteProcess implements Process {
private final TimeDiscretization timeDiscretization;
private final Map realizations;
/**
* Create a time discrete process by linear interpolation of random variables.
*
* @param realizations Given map from time to random variable. The map must not be modified.
*/
public LinearInterpolatedTimeDiscreteProcess(final Map realizations) {
super();
timeDiscretization = new TimeDiscretizationFromArray(realizations.keySet());
this.realizations = new HashMap<>();
this.realizations.putAll(realizations);
}
/**
* Private constructor. Note: The arguments are not cloned.
*
* @param timeDiscretization The time discretization.
* @param realizations The map from Double to RandomVariable.
*/
private LinearInterpolatedTimeDiscreteProcess(final TimeDiscretization timeDiscretization, final Map realizations) {
this.timeDiscretization = timeDiscretization;
this.realizations = realizations;
}
/**
* Create a new linear interpolated time discrete process by
* using the time discretization of this process and the sum of this process and the given one
* as its values.
*
* @param process A given process.
* @return A new process representing the of this and the given process.
* @throws CalculationException Thrown if the given process fails to evaluate at a certain time point.
*/
public LinearInterpolatedTimeDiscreteProcess add(final LinearInterpolatedTimeDiscreteProcess process) throws CalculationException {
final Map sum = new HashMap<>();
for(final double time: timeDiscretization) {
sum.put(time, realizations.get(time).add(process.getProcessValue(time, 0)));
}
return new LinearInterpolatedTimeDiscreteProcess(timeDiscretization, sum);
}
/**
* Create a new process consisting of the interpolation of the random variables obtained by
* applying the given function to this process discrete set of random variables.
* That is \( t \mapsto Y(t) \)
* where
* \[
* Y(t) = \frac{t_{i+1} - t}{t_{i+1}-t_{i}} f(X(t_{i})) + \frac{t - t_{i}}{t_{i+1}-t_{i}} f(X(t_{i+1}))
* \]
* with \( t_{i} \leq t \leq t_{i+1} \) and a given function \( f \).
*
* @param function The function \( f \), a univariate function.
* @return A new process consisting of the interpolation of the random variables obtained by applying the given function to this process discrete set of random variables.
*/
public LinearInterpolatedTimeDiscreteProcess apply(final DoubleUnaryOperator function) {
final Map result = new HashMap<>();
for(final double time: timeDiscretization) {
result.put(time, realizations.get(time).apply(function));
}
return new LinearInterpolatedTimeDiscreteProcess(timeDiscretization, result);
}
/**
* Returns the (possibly interpolated) value of this stochastic process at a given time \( t \).
*
* @param time The time \( t \).
* @param component The component to be returned (if this is a vector valued process), otherwise 0.
* @return The random variable \( X(t) \).
*/
public RandomVariable getProcessValue(final double time, final int component) {
final double timeLower = timeDiscretization.getTimeIndexNearestLessOrEqual(time);
final double timeUpper = timeDiscretization.getTimeIndexNearestGreaterOrEqual(time);
if(timeLower == timeUpper) {
return realizations.get(timeLower);
}
final RandomVariable valueLower = realizations.get(timeLower);
final RandomVariable valueUpper = realizations.get(timeUpper);
return valueUpper.mult((time-timeLower)/(timeUpper-timeLower)).add(valueLower.mult((timeUpper-time)/(timeUpper-timeLower)));
}
@Override
public RandomVariable getProcessValue(final int timeIndex, final int component) {
return realizations.get(timeDiscretization.getTime(timeIndex));
}
@Override
public RandomVariable getMonteCarloWeights(final int timeIndex) {
throw new UnsupportedOperationException();
}
@Override
public int getNumberOfComponents() {
return 1;
}
@Override
public TimeDiscretization getTimeDiscretization() {
return timeDiscretization;
}
@Override
public double getTime(final int timeIndex) {
return timeDiscretization.getTime(timeIndex);
}
@Override
public int getTimeIndex(final double time) {
return timeDiscretization.getTimeIndex(time);
}
@Override
public Process clone() {
return new LinearInterpolatedTimeDiscreteProcess(timeDiscretization, realizations);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy