net.finmath.singleswaprate.annuitymapping.BasicPiterbargAnnuityMapping Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.singleswaprate.annuitymapping;
import java.util.Arrays;
import net.finmath.marketdata.model.AnalyticModel;
import net.finmath.marketdata.model.volatilities.VolatilitySurface;
import net.finmath.marketdata.model.volatilities.VolatilitySurface.QuotingConvention;
import net.finmath.marketdata.products.SwapAnnuity;
import net.finmath.singleswaprate.model.VolatilityCubeModel;
import net.finmath.singleswaprate.model.volatilities.VolVolCube;
import net.finmath.singleswaprate.model.volatilities.VolatilityCube;
import net.finmath.singleswaprate.products.AnnuityDummyProduct;
import net.finmath.singleswaprate.products.NormalizingDummyProduct;
import net.finmath.time.Period;
import net.finmath.time.Schedule;
import net.finmath.time.ScheduleFromPeriods;
/**
* Implements an annuity mapping following Vladimir Piterbarg's approach. This class does not take into account multi curve convexity adjustment.
*
* @author Christian Fries
* @author Roland Bachl
*
*/
public class BasicPiterbargAnnuityMapping implements AnnuityMapping {
private static QuotingConvention quotingConvention = VolatilitySurface.QuotingConvention.VOLATILITYNORMAL;
private final int numberOfPeriods;
private final double[] periodLengths;
private final double[] initialAnnuities;
private final double[] initialSwapRates;
private final double[] exponentialDriverMeans;
private final double[] exponents;
private final double[] denominators;
private final double expectationCorrection;
private final NormalizingFunction normalizer;
/**
* Create the annuity mapping. When used without strike the volatilities are taken out of the cube at par swap rate.
*
* @param fixSchedule Fix leg schedule of the swap.
* @param floatSchedule Float leg schedule of the swap.
* @param model The model containing curve and cube.
* @param discountCurveName The name of the discount curve.
* @param volatilityCubeName The name of the volatility cube.
*/
public BasicPiterbargAnnuityMapping(final Schedule fixSchedule, final Schedule floatSchedule, final VolatilityCubeModel model, final String discountCurveName, final String volatilityCubeName) {
this(fixSchedule, floatSchedule, Double.NaN, model, discountCurveName, volatilityCubeName);
}
/**
* Create the annuity mapping.
*
* @param fixSchedule Fix leg schedule of the swap.
* @param floatSchedule Float leg schedule of the swap.
* @param strike The strike of the product this annuity mapping is being created for.
* @param model The model containing curve and cube.
* @param discountCurveName The name of the discount curve.
* @param volatilityCubeName The name of the volatility cube.
*/
public BasicPiterbargAnnuityMapping(final Schedule fixSchedule, final Schedule floatSchedule, final double strike, final VolatilityCubeModel model,
final String discountCurveName, final String volatilityCubeName) {
this(fixSchedule, floatSchedule, strike, model, discountCurveName, volatilityCubeName, 0, 0, -1);
}
/**
* Create the annuity mapping.
*
* @param fixSchedule Fix leg schedule of the swap.
* @param floatSchedule Float leg schedule of the swap.
* @param strike The strike of the product this annuity mapping is being created for.
* @param model The model containing curve and cube.
* @param discountCurveName The name of the discount curve.
* @param volatilityCubeName The name of the volatility cube.
* @param lowerBound The lowest strike the Piterbarg annuity mapping may use during replication, when normalizing.
* @param upperBound The maximum strike the Piterbarg annuity mapping may use during replication, when normalizing.
* @param numberOfEvaluationPoints The number of points the replication may evaluate Piterbarg annuity mapping is normalizing.
*/
public BasicPiterbargAnnuityMapping(final Schedule fixSchedule, final Schedule floatSchedule, double strike, final VolatilityCubeModel model,
final String discountCurveName, final String volatilityCubeName, final double lowerBound, final double upperBound, final int numberOfEvaluationPoints) {
super();
this.numberOfPeriods = fixSchedule.getNumberOfPeriods();
final double maturity = fixSchedule.getPeriodStart(0);
final double[] periodLengths = new double[numberOfPeriods];
final double[] periodEnds = new double[numberOfPeriods];
for(int index = 0; index < numberOfPeriods; index++) {
periodLengths[index] = fixSchedule.getPeriodLength(index);
periodEnds[index] = fixSchedule.getPeriodEnd(index);
}
this.periodLengths = periodLengths;
this.initialAnnuities = getAnnuities(fixSchedule, discountCurveName, model);
this.initialSwapRates = getForwardSwapRates(fixSchedule, discountCurveName, model);
final String volvolCubeName = "VolVolFrom" + volatilityCubeName;
final VolatilityCube volvolCube = new VolVolCube(volvolCubeName, model.getVolatilityCube(volatilityCubeName).getReferenceDate(),
volatilityCubeName, fixSchedule, initialSwapRates);
if(Double.isNaN(strike)) {
strike = initialSwapRates[numberOfPeriods-1];
}
//calculation of the various exp mu
this.exponentialDriverMeans = findExponentialDriverMeans(periodEnds, maturity, strike, volvolCube, model);
//calculation of arrays of the denominators and exponents of the individual summands in the function of the annuity mapping
final double[] exponents = new double[numberOfPeriods];
final double[] denominators = new double[numberOfPeriods];
Arrays.fill(denominators, 1.0);
double currentSummand;
double currentFactor;
final double terminalVolvol = volvolCube.getValue(model, periodEnds[numberOfPeriods-1], maturity, strike, quotingConvention);
for(int outerIndex = numberOfPeriods-1; outerIndex > -1; outerIndex--){
currentSummand = volvolCube.getValue(model, periodEnds[outerIndex], maturity, strike, quotingConvention);
currentFactor = (periodLengths[outerIndex] *initialSwapRates[outerIndex] +1.0) *exponentialDriverMeans[outerIndex];
for(int innerIndex = 0; innerIndex <= outerIndex; innerIndex++){
exponents[innerIndex] += currentSummand;
denominators[innerIndex] *= currentFactor;
}
exponents[outerIndex] /= terminalVolvol;
}
this.exponents = exponents;
this.denominators = denominators;
//calibrate the normalizing function to the measure of the annuity
final NormalizingDummyProduct unscaledNormalizerDummy = new NormalizingDummyProduct(fixSchedule, floatSchedule, discountCurveName, null, volatilityCubeName,
new ExponentialNormalizer(initialSwapRates[initialSwapRates.length-1], 1));
if(numberOfEvaluationPoints > 0) {
unscaledNormalizerDummy.setIntegrationParameters(lowerBound, upperBound, numberOfEvaluationPoints);
}
this.normalizer = new ExponentialNormalizer(initialSwapRates[initialSwapRates.length-1],
1 / unscaledNormalizerDummy.getValue(fixSchedule.getFixing(0), model));
//create a base mapping without correction of the expectation and calibrate the expectation correction
final BasicPiterbargAnnuityMapping uncorrectedMapping = new BasicPiterbargAnnuityMapping(numberOfPeriods, periodLengths, initialAnnuities,
initialSwapRates, exponentialDriverMeans, exponents, denominators, normalizer);
final AnnuityDummyProduct uncorrectedAnnuityDummy = new AnnuityDummyProduct(fixSchedule, floatSchedule, discountCurveName, null, volatilityCubeName,
uncorrectedMapping);
if(numberOfEvaluationPoints > 0) {
uncorrectedAnnuityDummy.setIntegrationParameters(lowerBound, upperBound, numberOfEvaluationPoints);
}
this.expectationCorrection = uncorrectedAnnuityDummy.getValue(fixSchedule.getFixing(0), model) - 1;
}
/**
* Private constructor to create a base copy which is used to determine the actual expectationCorrection.
*
* @param numberOfPeriods
* @param periodLengths
* @param initialAnnuities
* @param initialSwapRates
* @param exponentialDriverMeans
* @param exponents
* @param denominators
* @param normalizer
*/
private BasicPiterbargAnnuityMapping(final int numberOfPeriods, final double[] periodLengths, final double[] initialAnnuities,
final double[] initialSwapRates, final double[] exponentialDriverMeans, final double[] exponents, final double[] denominators, final NormalizingFunction normalizer) {
super();
this.numberOfPeriods = numberOfPeriods;
this.periodLengths = periodLengths;
this.initialAnnuities = initialAnnuities;
this.initialSwapRates = initialSwapRates;
this.exponentialDriverMeans = exponentialDriverMeans;
this.exponents = exponents;
this.denominators = denominators;
this.expectationCorrection = 0;
this.normalizer = normalizer;
}
@Override
public double getValue(final double swapRate) {
double term = periodLengths[numberOfPeriods-1] *swapRate +1.0;
term /= periodLengths[numberOfPeriods-1] *initialSwapRates[numberOfPeriods -1] +1.0;
term /= exponentialDriverMeans[numberOfPeriods -1];
double value = 0.0;
for(int index = 0; index < numberOfPeriods; index++){
value += (Math.pow(term, -exponents[index])) *periodLengths[index] /denominators[index];
}
return initialAnnuities[numberOfPeriods-1] /value - expectationCorrection * normalizer.getValue(swapRate);
}
@Override
public double getFirstDerivative(final double swapRate) {
double term = periodLengths[numberOfPeriods-1] *swapRate +1.0;
term /= periodLengths[numberOfPeriods-1] *initialSwapRates[numberOfPeriods -1] +1.0;
term /= exponentialDriverMeans[numberOfPeriods -1];
double value = 0.0;
double innerDerivative = 0.0;
for(int index = 0; index < numberOfPeriods; index++){
value += (Math.pow(term, -exponents[index])) *periodLengths[index] /denominators[index];
innerDerivative += (Math.pow(term, -exponents[index] -1)) *periodLengths[index]
*-exponents[index] /denominators[index];
}
innerDerivative *= periodLengths[numberOfPeriods-1] /exponentialDriverMeans[numberOfPeriods -1]
/(periodLengths[numberOfPeriods-1] *initialSwapRates[numberOfPeriods -1] +1.0);
return -initialAnnuities[numberOfPeriods-1] *innerDerivative /value /value - expectationCorrection * normalizer.getFirstDerivative(swapRate);
}
@Override
public double getSecondDerivative(final double swapRate) {
double term = periodLengths[numberOfPeriods-1] *swapRate +1.0;
term /= periodLengths[numberOfPeriods-1] *initialSwapRates[numberOfPeriods -1] +1.0;
term /= exponentialDriverMeans[numberOfPeriods -1];
double value = 0.0;
double innerFirst = 0.0;
double innerSecond = 0.0;
for(int index = 0; index < numberOfPeriods; index++){
value += (Math.pow(term, -exponents[0])) *periodLengths[index] /denominators[index];
innerFirst +=(Math.pow(term, -exponents[index] -1)) *periodLengths[index]
*-exponents[index] /denominators[index];
innerSecond += (Math.pow(term, -exponents[index] -2)) *periodLengths[index]
*exponents[index] *(exponents[index] +1.0) /denominators[index];
}
innerFirst *= periodLengths[numberOfPeriods-1] /(periodLengths[numberOfPeriods-1] *initialSwapRates[numberOfPeriods -1] +1.0)
/exponentialDriverMeans[numberOfPeriods -1];
innerSecond *=periodLengths[numberOfPeriods-1] *periodLengths[numberOfPeriods-1]
/(periodLengths[numberOfPeriods-1] *initialSwapRates[numberOfPeriods -1] +1.0)
/(periodLengths[numberOfPeriods-1] *initialSwapRates[numberOfPeriods -1] +1.0)
/exponentialDriverMeans[numberOfPeriods -1] /exponentialDriverMeans[numberOfPeriods -1];
return ((2.0 *innerFirst *innerFirst /value /value /value) - (innerSecond /value /value)) *initialAnnuities[numberOfPeriods-1]
- expectationCorrection * normalizer.getSecondDerivative(swapRate);
}
/**
* Calculates the constants \(e^{\mu_j} \) for all sub tenors.
*
* @param timePoints
* @param maturity
* @param strike
* @param volvolCube
* @param model
* @return
*/
private double[] findExponentialDriverMeans(final double[] timePoints, final double maturity, final double strike, final VolatilityCube volvolCube,
final VolatilityCubeModel model){
final double[] exponentialMeans = new double[numberOfPeriods];
final double[] volatilities = new double[numberOfPeriods];
for(int index = 0; index < numberOfPeriods; index++){
volatilities[index] = volvolCube.getValue(model, timePoints[index], maturity, strike, quotingConvention);
}
//initial ExponentialMean does not require the adjustment term
exponentialMeans[0] = Math.exp(maturity *0.5 *volatilities[0] *volatilities[0]);
exponentialMeans[0] *= periodLengths[0] /initialAnnuities[0] /(periodLengths[0] *initialSwapRates[0] +1.0);
double adjustment;
//used to calculate the adjustment term in the loop
final double[] volatilitySums = new double[numberOfPeriods];
final double[] adjustmentSummands = new double[numberOfPeriods];
for(int index = 0; index < numberOfPeriods; index++) {
volatilitySums[index] = volatilities[0];
adjustmentSummands[index] = 1.0;
}
for(int index = 1; index < numberOfPeriods; index++){
//approximation adjustment roughly annuities[index-1]
// adjustment = initialAnnuities[index-1];
// calculate adjustment
adjustment = 0.0;
for(int innerIndex = 0; innerIndex < index; innerIndex++){
adjustmentSummands[innerIndex] /= exponentialMeans[index-1] *(periodLengths[index-1] *initialSwapRates[index-1] +1.0);
volatilitySums[innerIndex] += volatilities[index];
}
for(int sumIndex = 0; sumIndex < index; sumIndex++){
adjustment += periodLengths[sumIndex] *adjustmentSummands[sumIndex] *Math.exp(maturity *volatilitySums[sumIndex]
*volatilitySums[sumIndex] /2);
}
//finalize exponentialMeans
exponentialMeans[index] = Math.exp(maturity *0.5 *volatilities[index] *volatilities[index]);
exponentialMeans[index] *= periodLengths[index];
exponentialMeans[index] += adjustment;
exponentialMeans[index] /= initialAnnuities[index] *(periodLengths[index] *initialSwapRates[index] + 1.0);
}
return exponentialMeans;
}
/**
* Calculates initial annuities on all sub-tenors.
*
* @param schedule
* @param discountCurveName
* @param model
* @return
*/
private double[] getAnnuities(final Schedule schedule, final String discountCurveName, final AnalyticModel model){
final double[] annuities = new double[schedule.getNumberOfPeriods()];
for(int annuityIndex=0; annuityIndex < schedule.getNumberOfPeriods();annuityIndex++){
final Period[] periods = new Period[annuityIndex +1];
for(int periodIndex=0; periodIndex <= annuityIndex; periodIndex++){
periods[periodIndex] = schedule.getPeriod(periodIndex);
}
final ScheduleFromPeriods partSchedule = new ScheduleFromPeriods(schedule.getReferenceDate(), schedule.getDaycountconvention(), periods);
annuities[annuityIndex] = SwapAnnuity.getSwapAnnuity(schedule.getFixing(0), partSchedule, model.getDiscountCurve(discountCurveName), model);
}
return annuities;
}
/**
* Calculates initial swap rates on all sub-tenors, after annuities have been determined.
*
* @param schedule
* @param discountCurveName
* @param model
* @return
*/
private double[] getForwardSwapRates(final Schedule schedule, final String discountCurveName, final AnalyticModel model){
final double[] swapRates = new double[schedule.getNumberOfPeriods()];
final double discount = model.getDiscountCurve(discountCurveName).getDiscountFactor(model, schedule.getFixing(0));
for(int swapRateIndex=0; swapRateIndex < schedule.getNumberOfPeriods();swapRateIndex++){
swapRates[swapRateIndex] = 1 - model.getDiscountCurve(discountCurveName).getDiscountFactor(model, schedule.getPayment(swapRateIndex)) / discount;
swapRates[swapRateIndex] /= initialAnnuities[swapRateIndex];
}
return swapRates;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy