net.finmath.climate.models.dice.DICEModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.climate.models.dice;
import java.util.Arrays;
import java.util.Map;
import java.util.function.DoubleUnaryOperator;
import java.util.function.Function;
import java.util.function.Predicate;
import java.util.function.UnaryOperator;
import java.util.logging.Logger;
import net.finmath.climate.models.AbatementModel;
import net.finmath.climate.models.ClimateModel;
import net.finmath.climate.models.SavingsRateModel;
import net.finmath.climate.models.dice.submodels.AbatementCostFunction;
import net.finmath.climate.models.dice.submodels.CarbonConcentration3DScalar;
import net.finmath.climate.models.dice.submodels.DamageFromTemperature;
import net.finmath.climate.models.dice.submodels.EmissionExternalFunction;
import net.finmath.climate.models.dice.submodels.EvolutionOfCapital;
import net.finmath.climate.models.dice.submodels.EvolutionOfCarbonConcentration;
import net.finmath.climate.models.dice.submodels.EvolutionOfEmissionIndustrialIntensity;
import net.finmath.climate.models.dice.submodels.EvolutionOfPopulation;
import net.finmath.climate.models.dice.submodels.EvolutionOfProductivity;
import net.finmath.climate.models.dice.submodels.EvolutionOfTemperature;
import net.finmath.climate.models.dice.submodels.ForcingExternalFunction;
import net.finmath.climate.models.dice.submodels.ForcingFunction;
import net.finmath.climate.models.dice.submodels.Temperature2DScalar;
import net.finmath.stochastic.RandomVariable;
import net.finmath.stochastic.Scalar;
import net.finmath.time.TimeDiscretization;
/**
* A simulation of a simplified DICE model (see net.finmath.climate.models.dice.DICEModelTest
in src/test/java) for an example usage.
*
* The model just composes the sub-models (evolution equations and functions) from the package {@link net.finmath.climate.models.dice.submodels}.
*
* Note: The code uses exponential discounting.
*/
public class DICEModel implements ClimateModel {
private static Logger logger = Logger.getLogger("net.finmath.climate");
/*
* Input to this class
*/
private final TimeDiscretization timeDiscretization;
private final UnaryOperator abatementFunction;
private final UnaryOperator savingsRateFunction;
private final double discountRate;
/*
* Simulated values - stored for plotting ande analysis
*/
private Temperature2DScalar[] temperature;
private CarbonConcentration3DScalar[] carbonConcentration;
private double[] gdp;
private double[] emission;
private double[] abatement;
private double[] abatementCosts;
private double[] damage;
private double[] damageCosts;
private double[] capital;
private double[] population;
private double[] productivity;
private double[] consumptions;
private double[] welfare;
private double[] value;
/**
* Create the model.
*
* @param timeDiscretization The time discretization to be used.
* @param abatementFunction Abatement function \( t \mapsto \mu(t) \)
* @param savingsRateFunction Savings rate function \( t \mapsto s(t) \)
* @param discountRate Constant exponential disocunt rate r
* @param modelProperties A key value map of optional model properties or parameters.
*/
public DICEModel(TimeDiscretization timeDiscretization, UnaryOperator abatementFunction, UnaryOperator savingsRateFunction, double discountRate, Map modelProperties) {
super();
this.timeDiscretization = timeDiscretization;
this.abatementFunction = abatementFunction;
this.savingsRateFunction = savingsRateFunction;
this.discountRate = discountRate;
int numberOfTimes = this.timeDiscretization.getNumberOfTimes();
temperature = new Temperature2DScalar[numberOfTimes];
carbonConcentration = new CarbonConcentration3DScalar[numberOfTimes];
gdp = new double[numberOfTimes];
emission = new double[numberOfTimes];
abatement = new double[numberOfTimes];
abatementCosts = new double[numberOfTimes];
damage = new double[numberOfTimes];
damageCosts = new double[numberOfTimes];
capital = new double[numberOfTimes];
population = new double[numberOfTimes];
productivity = new double[numberOfTimes];
consumptions = new double[numberOfTimes];
welfare = new double[numberOfTimes];
value = new double[numberOfTimes];
this.init(modelProperties);
}
public DICEModel(TimeDiscretization timeDiscretization, UnaryOperator abatementFunction, UnaryOperator savingsRateFunction, double discountRate) {
this(timeDiscretization, abatementFunction, savingsRateFunction, discountRate, Map.of());
}
public DICEModel(TimeDiscretization timeDiscretization, UnaryOperator abatementFunction) {
this(timeDiscretization, abatementFunction, t -> 0.259029014481802, 0.03);
}
private void init(Map modelProperties) {
Predicate isTimeIndexToShift = (Predicate) modelProperties.getOrDefault("isTimeIndexToShift", (Predicate) i -> true);
double initialEmissionShift = (double) modelProperties.getOrDefault("initialEmissionShift", 0.0);
double initialConsumptionShift = (double) modelProperties.getOrDefault("initialConsumptionShift", 0.0);
final double timeStep = timeDiscretization.getTimeStep(0);
/*
* Building the model by composing the different functions
*/
/*
* Note: Calling constructors without additional arguments will use default arguments consistent with the 2016 original model.
*/
/*
* State vectors initial values
*/
final Temperature2DScalar temperatureInitial = new Temperature2DScalar(0.85, 0.0068);
final CarbonConcentration3DScalar carbonConcentrationInitial = new CarbonConcentration3DScalar(851, 460, 1740); // Level of Carbon (GtC)
/*
* Sub-Modules: functional dependencies and evolution
*/
// Model that describes the damage on the GBP as a function of the temperature-above-normal
final DoubleUnaryOperator damageFunction = new DamageFromTemperature();
final EvolutionOfEmissionIndustrialIntensity emissionIndustrialIntensityFunction = new EvolutionOfEmissionIndustrialIntensity(timeDiscretization);
final Function emissionExternalFunction = new EmissionExternalFunction();
final EvolutionOfCarbonConcentration evolutionOfCarbonConcentration = new EvolutionOfCarbonConcentration(timeDiscretization);
final ForcingFunction forcingFunction = new ForcingFunction();
final ForcingExternalFunction forcingExternalFunction = new ForcingExternalFunction();
final EvolutionOfTemperature evolutionOfTemperature = new EvolutionOfTemperature(timeDiscretization);
// Abatement
final AbatementCostFunction abatementCostFunction = new AbatementCostFunction();
/*
* GDP
*/
final double K0 = 223; // Initial Capital
final double L0 = 7403; // Initial Population (world in million)
final double A0 = 5.115; // Initial Total Factor of Productivity
final double gamma = 0.3; // Capital Elasticity in Production Function
final double gdpInitial = A0*Math.pow(K0,gamma)*Math.pow(L0/1000,1-gamma);
// Capital
final EvolutionOfCapital evolutionOfCapital = new EvolutionOfCapital(timeDiscretization);
// Population
final EvolutionOfPopulation evolutionOfPopulation = new EvolutionOfPopulation(timeDiscretization);
// Productivity
final EvolutionOfProductivity evolutionOfProductivity = new EvolutionOfProductivity(timeDiscretization);
/*
* Set initial values
*/
temperature[0] = temperatureInitial;
carbonConcentration[0] = carbonConcentrationInitial;
gdp[0] = gdpInitial;
capital[0] = K0;
population[0] = L0;
productivity[0] = A0;
double utilityDiscountedSum = 0;
//Emission intensity initial value, sigma(0) = e0/q0
double emissionIntensity = 35.85/105.5;
/*
* Evolve
*/
for(int timeIndex=0; timeIndex i+1 (as a function of gdp[i])
*/
// Abatement
abatement[timeIndex] = abatementFunction.apply(timeDiscretization.getTime(timeIndex));
// Carbon
double emissionIndustrial = emissionIntensity/(1-abatement[0]) * gdp[timeIndex];
double emissionExternal = emissionExternalFunction.apply(time);
emission[timeIndex] = (1 - abatement[timeIndex]) * emissionIndustrial + emissionExternal;
// Allow for an external shift to the emissions (e.g. to calculate SCC).
emission[timeIndex] += isTimeIndexToShift.test(timeIndex) ? initialEmissionShift : 0.0;
carbonConcentration[timeIndex+1] = evolutionOfCarbonConcentration.apply(timeIndex, carbonConcentration[timeIndex], emission[timeIndex]);
// Temperature
double forcingExternal = forcingExternalFunction.apply(time+timeStep);
final double forcing = forcingFunction.apply(carbonConcentration[timeIndex+1], forcingExternal);
temperature[timeIndex+1] = evolutionOfTemperature.apply(timeIndex, temperature[timeIndex], forcing);
/*
* Cost
*/
damage[timeIndex] = damageFunction.applyAsDouble(temperature[timeIndex].getExpectedTemperatureOfAtmosphere());
double damageCostAbsolute = damage[timeIndex] * gdp[timeIndex];
damageCosts[timeIndex] = damageCostAbsolute;
double abatementCostAbsolute = abatementCostFunction.apply(time, abatement[timeIndex]) * emissionIndustrial;
abatementCosts[timeIndex] = abatementCostAbsolute;
/*
* Evolve economy i -> i+1 (as a function of temperature[i])
*/
// Remaining gdp
double gdpNet = gdp[timeIndex] - damageCostAbsolute - abatementCostAbsolute;
/*
* Equivalent (alternative way) to calculate the abatement
*/
double abatementCost = abatementCostFunction.apply(time, abatement[timeIndex]) * emissionIntensity/(1-abatement[0]);
double gdpNet2 = gdp[timeIndex] * (1-damage[timeIndex] - abatementCost);
if(Math.abs(gdpNet2-gdpNet)/(1+Math.abs(gdpNet)) > 1E-10) logger.warning("Calculation of relative and absolute net GDP does not match.");
// Evolve emission intensity
emissionIntensity = emissionIndustrialIntensityFunction.apply(timeIndex, emissionIntensity);
// Constant from the original model - in the original model this is a time varying control variable.
double savingsRate = savingsRateFunction.apply(time); //0.259029014481802;
double consumption = (1-savingsRate) * gdpNet;
double investment = savingsRate * gdpNet;
// Allow for an external shift to the emissions (e.g. to calculate SCC).
consumption += isTimeIndexToShift.test(timeIndex) ? initialConsumptionShift : 0.0;
consumptions[timeIndex] = consumption;
capital[timeIndex+1] = evolutionOfCapital.apply(timeIndex).apply(capital[timeIndex], investment);
/*
* Evolve population and productivity for next GDP
*/
population[timeIndex+1] = evolutionOfPopulation.apply(timeIndex).apply(population[timeIndex]);
productivity[timeIndex+1] = evolutionOfProductivity.apply(timeIndex).apply(productivity[timeIndex]);
double L = population[timeIndex+1];
double A = productivity[timeIndex+1];
gdp[timeIndex+1] = A*Math.pow(capital[timeIndex+1],gamma)*Math.pow(L/1000,1-gamma);
/*
* Calculate utility
*/
double alpha = 1.45; // Elasticity of marginal utility of consumption (GAMS elasmu)
double C = consumption;
double utility = population[timeIndex]*( (Math.pow(1000*C/(population[timeIndex]),1-alpha)-1) /(1-alpha)-1 );
/*
* Discounted utility
*/
double discountFactor = Math.exp(- discountRate * time);
welfare[timeIndex] = utility * discountFactor;
utilityDiscountedSum = utilityDiscountedSum + utility*discountFactor*timeStep;
value[timeIndex+1] = utilityDiscountedSum;
}
}
@Override
public TimeDiscretization getTimeDiscretization() {
return timeDiscretization;
}
@Override
public RandomVariable getTemperature(double time) {
return Scalar.of(temperature[timeDiscretization.getTimeIndex(time)].getExpectedTemperatureOfAtmosphere());
}
@Override
public RandomVariable getValue() {
return Scalar.of(value[value.length-1]);
}
@Override
public RandomVariable[] getValues() {
return Arrays.stream(value).mapToObj(Scalar::of).toArray(RandomVariable[]::new);
}
@Override
public RandomVariable[] getAbatement() {
return Arrays.stream(abatement).mapToObj(Scalar::of).toArray(RandomVariable[]::new);
}
@Override
public RandomVariable[] getEmission() {
return Arrays.stream(emission).mapToObj(Scalar::of).toArray(RandomVariable[]::new);
}
@Override
public net.finmath.climate.models.CarbonConcentration[] getCarbonConcentration() {
return carbonConcentration;
}
@Override
public net.finmath.climate.models.Temperature[] getTemperature() {
return temperature;
}
@Override
public RandomVariable[] getDamage() {
return Arrays.stream(damage).mapToObj(Scalar::of).toArray(RandomVariable[]::new);
}
@Override
public RandomVariable[] getGDP() {
return Arrays.stream(gdp).mapToObj(Scalar::of).toArray(RandomVariable[]::new);
}
@Override
public RandomVariable[] getConsumptions() {
return Arrays.stream(consumptions).mapToObj(Scalar::of).toArray(RandomVariable[]::new);
}
@Override
public RandomVariable[] getAbatementCosts() {
return Arrays.stream(abatementCosts).mapToObj(Scalar::of).toArray(RandomVariable[]::new);
}
@Override
public RandomVariable getAbatementCost() {
double abatementCost = 0.0;
for(int timeIndex = 0; timeIndex < timeDiscretization.getNumberOfTimes(); timeIndex++) {
abatementCost += abatementCosts[timeIndex] * Math.exp(- discountRate * timeDiscretization.getTime(timeIndex));
}
return Scalar.of(abatementCost);
}
@Override
public RandomVariable[] getDamageCosts() {
return Arrays.stream(damageCosts).mapToObj(Scalar::of).toArray(RandomVariable[]::new);
}
@Override
public RandomVariable getDamageCost() {
double damageCost = 0.0;
for(int timeIndex = 0; timeIndex < timeDiscretization.getNumberOfTimes(); timeIndex++) {
damageCost += damageCosts[timeIndex] * Math.exp(- discountRate * timeDiscretization.getTime(timeIndex));
}
return Scalar.of(damageCost);
}
@Override
public RandomVariable getNumeraire(double time) {
return Scalar.of(Math.exp(- discountRate * time));
}
@Override
public AbatementModel getAbatementModel() {
return (AbatementModel)abatementFunction.andThen(Scalar::new).andThen(RandomVariable.class::cast);
}
@Override
public SavingsRateModel getSavingsRateModel() {
return (SavingsRateModel)savingsRateFunction.andThen(Scalar::new).andThen(RandomVariable.class::cast);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy