All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.climate.models.dice.submodels.EvolutionOfCarbonConcentration Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
package net.finmath.climate.models.dice.submodels;

import java.util.function.Function;

import net.finmath.functions.LinearAlgebra;
import net.finmath.time.TimeDiscretization;
import net.finmath.util.Cached;
import net.finmath.util.TriFunction;

/**
 * The evolution of the carbon concentration M with a given emission E \( \mathrm{d}M(t) = \left( \Gamma_{M} M(t) + E(t) \right) \mathrm{d}t \).
 *
 * The unit of \( M \) is GtC (Gigatons of Carbon).
 *
 * The evolution is modelled as \( \mathrm{d}M(t) = \left( \Gamma_{M} M(t) + E(t) \right) \mathrm{d}t \right).
 * With the given {@link TimeDiscretization} it is approximated via an Euler-step
 * \(
 * 	M(t_{i+1}) = \Phi M(t_{i}) + unitConversion \cdot E(t_{i}) \Delta t_{i}
 * \)
 * where \( \Phi = (1 + \Gamma_{M} \Delta t_{i}) \).
 *
 * Note: the emission E are in GtCO2/year while the carbon concentration is in M GtC.
 *
 * Unit conversions
 * 
    *
  • 1 t Carbon = 3.666 t CO2
  • *
* * @author Christian Fries */ public class EvolutionOfCarbonConcentration implements TriFunction { private static double conversionGtCperGtCO2 = 1/3.666; private static double[][] transitionMatrix5YDefault; // Original transition matrix is a 5Y transition matrix static { final double b12 = 0.12; // scale final double b23 = 0.007; // scale final double mateq = 588; final double mueq = 360; final double mleq = 1720; final double zeta11 = 1 - b12; //b11 final double zeta21 = b12; final double zeta12 = b12*(mateq/mueq); final double zeta22 = 1 - zeta12 - b23; final double zeta32 = b23; final double zeta23 = b23*(mueq/mleq); final double zeta33 = 1 - zeta23; transitionMatrix5YDefault = new double[][] { new double[] { zeta11, zeta12, 0.0 }, new double[] { zeta21, zeta22, zeta23 }, new double[] { 0.0, zeta32, zeta33 } }; } private final TimeDiscretization timeDiscretization; private final Function transitionMatrices; // phi in [i][j] (i = row, j = column) public EvolutionOfCarbonConcentration(TimeDiscretization timeDiscretization, Function transitionMatrices) { super(); this.timeDiscretization = timeDiscretization; this.transitionMatrices = transitionMatrices; } public EvolutionOfCarbonConcentration(TimeDiscretization timeDiscretization) { Function timeSteps = ((Integer timeIndex) -> { return timeDiscretization.getTimeStep(timeIndex); }); this.timeDiscretization = timeDiscretization; transitionMatrices = timeSteps.andThen(Cached.of(timeStep -> timeStep == 5.0 ? transitionMatrix5YDefault : LinearAlgebra.matrixPow(transitionMatrix5YDefault, (Double)timeStep/5.0))); } /** * Update CarbonConcentration over one time step with a given emission. * * @param carbonConcentration The CarbonConcentration in time \( t_{i} \) * @param emissions The emissions in GtCO2 / year. */ public CarbonConcentration3DScalar apply(Integer timeIndex, CarbonConcentration3DScalar carbonConcentration, Double emissions) { final double timeStep = timeDiscretization.getTimeStep(timeIndex); final double[] carbonConcentrationNext = LinearAlgebra.multMatrixVector(transitionMatrices.apply(timeIndex), carbonConcentration.getAsDoubleArray()); // Add emissions carbonConcentrationNext[0] += emissions * timeStep * conversionGtCperGtCO2; return new CarbonConcentration3DScalar(carbonConcentrationNext); } public TimeDiscretization getTimeDiscretization() { return timeDiscretization; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy