net.finmath.climate.models.dice.submodels.EvolutionOfCarbonConcentration Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.climate.models.dice.submodels;
import java.util.function.Function;
import net.finmath.functions.LinearAlgebra;
import net.finmath.time.TimeDiscretization;
import net.finmath.util.Cached;
import net.finmath.util.TriFunction;
/**
* The evolution of the carbon concentration M with a given emission E \( \mathrm{d}M(t) = \left( \Gamma_{M} M(t) + E(t) \right) \mathrm{d}t \).
*
* The unit of \( M \) is GtC (Gigatons of Carbon).
*
* The evolution is modelled as \( \mathrm{d}M(t) = \left( \Gamma_{M} M(t) + E(t) \right) \mathrm{d}t \right).
* With the given {@link TimeDiscretization} it is approximated via an Euler-step
* \(
* M(t_{i+1}) = \Phi M(t_{i}) + unitConversion \cdot E(t_{i}) \Delta t_{i}
* \)
* where \( \Phi = (1 + \Gamma_{M} \Delta t_{i}) \).
*
* Note: the emission E are in GtCO2/year while the carbon concentration is in M GtC.
*
* Unit conversions
*
* - 1 t Carbon = 3.666 t CO2
*
*
* @author Christian Fries
*/
public class EvolutionOfCarbonConcentration implements TriFunction {
private static double conversionGtCperGtCO2 = 1/3.666;
private static double[][] transitionMatrix5YDefault;
// Original transition matrix is a 5Y transition matrix
static {
final double b12 = 0.12; // scale
final double b23 = 0.007; // scale
final double mateq = 588;
final double mueq = 360;
final double mleq = 1720;
final double zeta11 = 1 - b12; //b11
final double zeta21 = b12;
final double zeta12 = b12*(mateq/mueq);
final double zeta22 = 1 - zeta12 - b23;
final double zeta32 = b23;
final double zeta23 = b23*(mueq/mleq);
final double zeta33 = 1 - zeta23;
transitionMatrix5YDefault = new double[][] { new double[] { zeta11, zeta12, 0.0 }, new double[] { zeta21, zeta22, zeta23 }, new double[] { 0.0, zeta32, zeta33 } };
}
private final TimeDiscretization timeDiscretization;
private final Function transitionMatrices; // phi in [i][j] (i = row, j = column)
public EvolutionOfCarbonConcentration(TimeDiscretization timeDiscretization, Function transitionMatrices) {
super();
this.timeDiscretization = timeDiscretization;
this.transitionMatrices = transitionMatrices;
}
public EvolutionOfCarbonConcentration(TimeDiscretization timeDiscretization) {
Function timeSteps = ((Integer timeIndex) -> { return timeDiscretization.getTimeStep(timeIndex); });
this.timeDiscretization = timeDiscretization;
transitionMatrices = timeSteps.andThen(Cached.of(timeStep -> timeStep == 5.0 ? transitionMatrix5YDefault : LinearAlgebra.matrixPow(transitionMatrix5YDefault, (Double)timeStep/5.0)));
}
/**
* Update CarbonConcentration over one time step with a given emission.
*
* @param carbonConcentration The CarbonConcentration in time \( t_{i} \)
* @param emissions The emissions in GtCO2 / year.
*/
public CarbonConcentration3DScalar apply(Integer timeIndex, CarbonConcentration3DScalar carbonConcentration, Double emissions) {
final double timeStep = timeDiscretization.getTimeStep(timeIndex);
final double[] carbonConcentrationNext = LinearAlgebra.multMatrixVector(transitionMatrices.apply(timeIndex), carbonConcentration.getAsDoubleArray());
// Add emissions
carbonConcentrationNext[0] += emissions * timeStep * conversionGtCperGtCO2;
return new CarbonConcentration3DScalar(carbonConcentrationNext);
}
public TimeDiscretization getTimeDiscretization() {
return timeDiscretization;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy