net.finmath.equities.models.Black76Model Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.equities.models;
import java.util.function.Function;
import net.finmath.functions.NormalDistribution;
/**
* This class implements formulas for the Black76 model.
*
* @author Andreas Grotz
*/
public final class Black76Model {
private Black76Model()
{
// This constructor will never be invoked
}
/**
* Calculates the Black76 option price and sensitivities of a call or put.
*/
public static double optionPrice(
final double forward,
final double optionStrike,
final double optionMaturity,
final double volatility,
final boolean isCall,
final double discountFactor)
{
final double callFactor = isCall ? 1.0 : -1.0;
double valueAnalytic;
if(optionMaturity < 0) {
valueAnalytic = 0;
}
else if(volatility == 0.0 || optionMaturity == 0.0)
{
valueAnalytic = Math.max(callFactor * (forward - optionStrike),0);
}
else if(volatility == Double.POSITIVE_INFINITY)
{
valueAnalytic = isCall ? forward : optionStrike;
}
else
{
final double dPlus = (Math.log(forward / optionStrike) + 0.5 * volatility * volatility * optionMaturity)
/ (volatility * Math.sqrt(optionMaturity));
final double dMinus = dPlus - volatility * Math.sqrt(optionMaturity);
valueAnalytic = callFactor * (forward * NormalDistribution.cumulativeDistribution(callFactor * dPlus)
- optionStrike * NormalDistribution.cumulativeDistribution(callFactor * dMinus));
}
return valueAnalytic * discountFactor;
}
public static double optionDelta(
final double forward,
final double optionStrike,
final double optionMaturity,
final double volatility,
final boolean isCall,
final double discountFactor)
{
final double callFactor = isCall ? 1.0 : -1.0;
double valueAnalytic;
if(optionMaturity < 0) {
valueAnalytic = 0;
}
else if(volatility == 0.0 || optionMaturity == 0.0)
{
valueAnalytic = (forward == optionStrike) ? 0.5 : (callFactor * (forward - optionStrike) > 0.0 ? callFactor : 0.0);
}
else if(volatility == Double.POSITIVE_INFINITY)
{
valueAnalytic = isCall ? 1.0 : 0.0;
}
else
{
final double dPlus = (Math.log(forward / optionStrike) + 0.5 * volatility * volatility * optionMaturity) / (volatility * Math.sqrt(optionMaturity));
valueAnalytic = callFactor * NormalDistribution.cumulativeDistribution(callFactor * dPlus);
}
return valueAnalytic * discountFactor;
}
public static double optionVega(
final double forward,
final double optionStrike,
final double optionMaturity,
final double volatility,
final boolean isCall,
final double discountFactor)
{
double valueAnalytic;
if(optionMaturity < 0) {
valueAnalytic = 0;
}
else if(volatility == 0.0 || optionMaturity == 0.0)
{
valueAnalytic = 0;
}
else if(volatility == Double.POSITIVE_INFINITY)
{
valueAnalytic = 0;
}
else
{
final double sqrtT = Math.sqrt(optionMaturity);
final double dPlus = (Math.log(forward / optionStrike) + 0.5 * volatility * volatility * optionMaturity) / (volatility * sqrtT);
valueAnalytic = forward * sqrtT * NormalDistribution.density(dPlus);
}
return valueAnalytic * discountFactor;
}
public static double optionGamma(
final double forward,
final double optionStrike,
final double optionMaturity,
final double volatility,
final boolean isCall,
final double discountFactor)
{
double valueAnalytic;
if(optionMaturity < 0) {
valueAnalytic = 0;
}
else if(volatility == 0.0 || optionMaturity == 0.0)
{
valueAnalytic = 0;
}
else if(volatility == Double.POSITIVE_INFINITY)
{
valueAnalytic = 0;
}
else
{
final double sDev = volatility * Math.sqrt(optionMaturity);
final double dPlus = (Math.log(forward / optionStrike) + 0.5 * volatility * volatility * optionMaturity) / sDev;
valueAnalytic = NormalDistribution.density(dPlus) / forward / sDev;
}
return valueAnalytic * discountFactor;
}
public static double optionTheta(
final double forward,
final double optionStrike,
final double optionMaturity,
final double volatility,
final boolean isCall,
final double discountFactor,
final double discountRate)
{
double valueAnalytic = discountRate * optionPrice(
forward,
optionStrike,
optionMaturity,
volatility,
isCall,
discountFactor);
valueAnalytic -= 0.5 * forward * forward * volatility * volatility * optionGamma(
forward,
optionStrike,
optionMaturity,
volatility,
isCall,
discountFactor);
return valueAnalytic;
}
/**
* Determine the implied volatility of a call or put, given its (undiscounted) market price.
* Implementation according to Jaeckel's 2016 paper.
* NOTE: The special cases of the Black-Scholes function from Section 6 in Jaeckel's paper
* are not implemented. Thus, the double precision convergence after
* two Householder steps cannot be guaranteed for all possible inputs.
*/
public static double optionImpliedVolatility(
double forward,
double optionStrike,
double optionMaturity,
double undiscountedPrice,
boolean isCall)
{
final double x, beta, bMax;
final double xTemp = Math.log(forward / optionStrike);
final double betaTemp = undiscountedPrice / Math.sqrt(forward * optionStrike);
final double bMaxTemp = Math.exp(0.5 * xTemp);
// Convert to case of OTM Call
if (isCall)
{
if (xTemp > 0.0)
{
// ITM call
x = -xTemp;
bMax = Math.exp(0.5 * x);
beta = betaTemp + 2.0 * Math.sinh(0.5 * x);
}
else
{
x = xTemp;
beta = betaTemp;
bMax = bMaxTemp;
}
}
else
{
if (xTemp >= 0.0)
{
// OTM put
x = -xTemp;
beta = betaTemp;
bMax = Math.exp(0.5 * x);
}
else
{
// ITM put
x = xTemp;
beta = betaTemp + 2.0 * Math.sinh(0.5 * x);
bMax = bMaxTemp;
}
}
assert beta >= 0.0 && beta <= bMax : "The price " + undiscountedPrice
+ "is not attainable in Black-Scholes given the other parameters provided.";
if (x == 0.0) {
return 2.0 * NormalDistribution.inverseCumulativeDistribution(0.5 * (beta + 1.0));
}
// Initial guess using rational interpolation
final double sqrtPi = Math.sqrt(2.0 * Math.PI);
final double sigmaCentral = Math.sqrt(-2.0 * x);
final double d1Central = x / sigmaCentral;
final double d2Central = 0.5 * sigmaCentral;
final double bCentral = NormalDistribution.cumulativeDistribution(d1Central + d2Central) * bMax -
NormalDistribution.cumulativeDistribution(d1Central - d2Central) / bMax;
final double bPrimeCentral = Math.exp(-0.5 * (d1Central * d1Central + d2Central * d2Central)) / sqrtPi;
final double sigmaLower = sigmaCentral - bCentral / bPrimeCentral;
final double d1Lower = x / sigmaLower;
final double d2Lower = 0.5 * sigmaLower;
final double bLower = NormalDistribution.cumulativeDistribution(d1Lower + d2Lower) * bMax -
NormalDistribution.cumulativeDistribution(d1Lower - d2Lower) / bMax;
final double sigmaUpper = sigmaCentral + (bMax - bCentral) / bPrimeCentral;
final double d1Upper = x / sigmaUpper;
final double d2Upper = 0.5 * sigmaUpper;
final double bUpper = NormalDistribution.cumulativeDistribution(d1Upper + d2Upper) * bMax -
NormalDistribution.cumulativeDistribution(d1Upper - d2Upper) / bMax;
double impliedSdev;
if (beta < bLower)
{
final double sqrtThree = Math.sqrt(3.0);
final double twoPi = 2.0 * Math.PI;
final double z = x / sigmaLower / sqrtThree;
final double normDistOfZ = NormalDistribution.cumulativeDistribution(z);
final double fOfZ = -twoPi * x * normDistOfZ * normDistOfZ * normDistOfZ / 3.0 / sqrtThree;
final double sigmaLowerSquare = sigmaLower * sigmaLower;
final double zSquare = z * z;
final double fPrime = twoPi * zSquare * normDistOfZ * normDistOfZ * Math.exp(zSquare + sigmaLowerSquare / 8.0);
final double fPrime2 = Math.PI * zSquare * normDistOfZ * Math.exp(2.0 * zSquare + sigmaLowerSquare / 4.0)
/ 6.0 / sigmaLowerSquare / sigmaLower
* (-8 * sqrtThree * sigmaLower * x
+ (3.0 * sigmaLowerSquare * (sigmaLowerSquare - 8.0) - 8.0 * x * x) * normDistOfZ / NormalDistribution.density(z));
final double r = (0.5 * fPrime2 * bLower + fPrime - 1.0) / (fPrime - fOfZ / bLower);
final double fRationalCubic = rationalCubicInterpol(beta, 0.0, bLower, 0.0, fOfZ, 1.0, fPrime, r);
impliedSdev = NormalDistribution.inverseCumulativeDistribution(sqrtThree * Math.pow(Math.abs(fRationalCubic / twoPi / x), 1.0 / 3.0));
impliedSdev = Math.abs(x / sqrtThree / impliedSdev);
}
else if (beta <= bCentral)
{
final double bPrimeLower1 = Math.exp(0.5 * (d1Lower * d1Lower + d2Lower * d2Lower)) * sqrtPi;
final double bPrimeCentral1 = 1.0 / bPrimeCentral;
final double r = (bPrimeCentral1 - bPrimeLower1) / (bPrimeCentral1 - (sigmaCentral - sigmaLower) / (bCentral - bLower) );
impliedSdev = rationalCubicInterpol(beta, bLower, bCentral, sigmaLower, sigmaCentral, bPrimeLower1, bPrimeCentral1, r);
}
else if (beta <= bUpper)
{
final double bPrimeUpper1 = Math.exp(0.5 * (d1Upper * d1Upper + d2Upper * d2Upper)) * sqrtPi;
final double bPrimeCentral1 = 1.0 / bPrimeCentral;
final double r = (bPrimeUpper1 - bPrimeCentral1) / ((sigmaUpper - sigmaCentral) / (bUpper - bCentral) - bPrimeCentral1);
impliedSdev = rationalCubicInterpol(beta, bCentral, bUpper, sigmaCentral, sigmaUpper, bPrimeCentral1, bPrimeUpper1, r);
}
else
{
final double f = NormalDistribution.cumulativeDistribution(-0.5 * sigmaUpper);
final double sigmaUpper2 = sigmaUpper * sigmaUpper;
final double xSigma = x * x / sigmaUpper2;
final double fPrime = -0.5 * Math.exp(0.5 * xSigma);
final double fPrime2 = Math.sqrt(0.5 * Math.PI) * xSigma / sigmaUpper * Math.exp(xSigma + sigmaUpper2 / 8);
final double h = bMax - bUpper;
final double r = (0.5 * fPrime2 * h - 0.5 - fPrime) / (-f / h - fPrime);
final double fRC = rationalCubicInterpol(beta, bUpper, bMax, f, 0.0, fPrime, -0.5, r);
impliedSdev = -2.0 * NormalDistribution.inverseCumulativeDistribution(fRC);
}
// Third-order Householder steps using three branch rational objective function
final double bMaxHalf = 0.5 * bMax;
final double bTildeUpper = (bUpper >= bMaxHalf) ? bUpper : bMaxHalf;
// Efficient implementation of Black derivatives
// We have b(x) = b0, db(x)/dx = b1, d^2b(x)/dx^2 = b2 * b1, d^3b(x)/dx^3 = b3 * b1
final Function BlackFunctionDerivatives = sigma -> {
final double d1 = x / sigma;
final double d2 = 0.5 * sigma;
final double d1Square = d1 * d1;
final double d2Square = d2 * d2;
final double b0 = NormalDistribution.cumulativeDistribution(d1 + d2) * bMax - NormalDistribution.cumulativeDistribution(d1 - d2) / bMax;
final double b1 = Math.exp(-0.5 * (d1Square + d2Square)) / sqrtPi;
final double b2 = d1Square / sigma - 0.25 * sigma;
final double b3 = b2 * b2 - 0.75 * d1Square / d2Square - 0.25;
return new Double[] {b0, b1, b2, b3};
};
if (beta <= bLower)
{
final Function HouseholderStep = sigma ->
{
final Double[] derivatives = BlackFunctionDerivatives.apply(sigma);
final double b0 = derivatives[0];
final double b1 = derivatives[1];
final double b2 = derivatives[2];
final double b3 = derivatives[3];
final double lnOfB = Math.log(b0);
final double bLnOfB = b0 * lnOfB;
final double bLnOfBSquare = bLnOfB * bLnOfB;
final double nu = bLnOfB * (1.0 - lnOfB / Math.log(beta)) / b1;
final double gamma = (b0 * b2 * lnOfB - b1 * (lnOfB + 2.0)) / bLnOfB;
final double delta = (bLnOfBSquare * b3 + 2.0 * b1 * b1 * (lnOfB * lnOfB + 3.0 * lnOfB + 3.0)
- 3.0 * bLnOfB * b1 * b2 * (lnOfB + 2.0)) / bLnOfBSquare;
return sigma + nu * (1.0 + 0.5 * nu * gamma) / (1.0 + nu * (gamma + delta * nu / 6.0));
};
impliedSdev = HouseholderStep.apply(impliedSdev);
impliedSdev = HouseholderStep.apply(impliedSdev);
}
else if (beta <= bTildeUpper)
{
final Function HouseholderStep = sigma ->
{
final Double[] deriv = BlackFunctionDerivatives.apply(sigma);
final double b0 = deriv[0] - beta;
final double b1 = deriv[1];
final double b2 = deriv[2];
final double b3 = deriv[3];
final double nu = -b0 / b1;
final double gamma = b2;
final double delta = b3;
return sigma + nu * (1.0 + 0.5 * nu * gamma) / (1.0 + nu * (gamma + delta * nu / 6.0));
};
impliedSdev = HouseholderStep.apply(impliedSdev);
impliedSdev = HouseholderStep.apply(impliedSdev);
}
else
{
final Function HouseholderStep = sigma ->
{
final Double[] deriv = BlackFunctionDerivatives.apply(sigma);
final double b0 = deriv[0];
final double b1 = deriv[1];
final double b2 = deriv[2];
final double b3 = deriv[3];
final double bmaxb0 = bMax - b0;
final double nu = bmaxb0 * Math.log(bmaxb0 / (bMax - beta)) / b1;
final double gamma = b2 + b1 / bmaxb0;
final double delta = b3 + 3.0 * b1 * b2 / bmaxb0 + 2.0 * b1 * b1 / bmaxb0 / bmaxb0;
return sigma + nu * (1.0 + 0.5 * nu * gamma) / (1.0 + nu * (gamma + delta * nu / 6.0));
};
impliedSdev = HouseholderStep.apply(impliedSdev);
impliedSdev = HouseholderStep.apply(impliedSdev);
}
// Return implied volatility
return impliedSdev / Math.sqrt(optionMaturity);
}
/**
* Helper function for rational cubic interpolation in implied volatility calculations
*/
private static double rationalCubicInterpol(double xValue, double xLeft, double xRight, double fLeft, double fRight, double fPrimeLeft, double fPrimeRight, double blend)
{
final double h = xRight - xLeft;
final double s = (xValue - xLeft) / h;
final double sMinusOne = 1.0 - s;
return (fRight * s * s * s + (blend * fRight - h * fPrimeRight) * s * s * sMinusOne
+ (blend * fLeft + h * fPrimeLeft) * s * sMinusOne * sMinusOne + fLeft * sMinusOne * sMinusOne * sMinusOne)
/ (1 + (blend - 3) * s * sMinusOne);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy