net.finmath.equities.pricer.PdeOptionValuation Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.equities.pricer;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import org.apache.commons.math3.linear.DecompositionSolver;
import org.apache.commons.math3.linear.LUDecomposition;
import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.RealMatrix;
import net.finmath.equities.marketdata.FlatYieldCurve;
import net.finmath.equities.models.EquityForwardStructure;
import net.finmath.equities.models.FlatVolatilitySurface;
import net.finmath.equities.models.VolatilitySurface;
import net.finmath.equities.pricer.EquityValuationRequest.CalculationRequestType;
import net.finmath.equities.products.EuropeanOption;
import net.finmath.equities.products.Option;
import net.finmath.rootfinder.BisectionSearch;
import net.finmath.rootfinder.SecantMethod;
import net.finmath.time.daycount.DayCountConvention;
/**
* This class implements a finite difference pricer under a Black-Scholes process or a
* local volatility process in the presence of Buehler dividends.
* It supports European and American options. Greeks are calculated inside the grid to the extent possible.
* The implementation uses a Crank-Nicolson scheme.
* Payoffs are smoothed using the modified timestepping from Rannacher's 1984 paper.
* The American exercise feature is priced using the penalty approach from Forsyth's 2001 paper.
*
* TODO The linear algebra framework used (apache.commons.math3) is not optimized for the discretized PDE.
* More performant linear algebra algorithms should be used that take account of
* the tridiagonal matrix structure of the problem, e.g. direct diagonal operations instead of full-blown
* matrix multiplication, and the Thomas algorithm instead of LU decomposition for solving equations.
*
* @author Andreas Grotz
*/
public class PdeOptionValuation implements OptionValuation
{
private final int timeStepsPerYear;
private final double spaceMinForwardMultiple;
private final double spaceMaxForwardMultiple;
private final int spaceNbOfSteps;
private final double spaceStepSize;
private final ArrayList spots;
private final int spotIndex;
private final DayCountConvention dayCounter;
private final boolean isLvPricer;
private final boolean includeDividendDatesInGrid;
public PdeOptionValuation(
double spaceMinForwardMultiple,
double spaceMaxForwardMultiple,
int spaceNbPoints,
final int timeStepsPerYear,
DayCountConvention dcc,
final boolean isLvPricer,
final boolean includeDividendDatesInGrid)
{
assert spaceMinForwardMultiple < 1.0 : "min multiple of forward must be below 1.0";
assert spaceMaxForwardMultiple > 1.0 : "max multiple of forward must be below 1.0";
this.timeStepsPerYear = timeStepsPerYear;
this.dayCounter = dcc;
this.isLvPricer = isLvPricer;
this.includeDividendDatesInGrid = includeDividendDatesInGrid;
// Set up the space grid for the pure volatility process
var tmpSpaceStepSize = (spaceMaxForwardMultiple - spaceMinForwardMultiple) / spaceNbPoints;
var tmpSpaceNbPoints = spaceNbPoints;
var tmpSpots = new ArrayList();
for (int i = 0; i < tmpSpaceNbPoints; i++) {
tmpSpots.add(spaceMinForwardMultiple + tmpSpaceStepSize * i);
}
// The space grid needs to include the forward level 1.0 for the pure volatility process
// Hence if necessary, we increase the step size slightly to include it
final var lowerBound = Math.abs(Collections.binarySearch(tmpSpots, 1.0)) - 2;
if (!(tmpSpots.get(lowerBound) == 1.0))
{
tmpSpaceStepSize += (1.0 - tmpSpots.get(lowerBound)) / lowerBound;
tmpSpots = new ArrayList();
tmpSpaceNbPoints = 0;
var tmpSpot = 0.0;
while (tmpSpot < spaceMaxForwardMultiple)
{
tmpSpot = spaceMinForwardMultiple + tmpSpaceStepSize * tmpSpaceNbPoints;
tmpSpots.add(tmpSpot);
tmpSpaceNbPoints++;
}
}
this.spaceMinForwardMultiple = spaceMinForwardMultiple;
this.spaceMaxForwardMultiple = tmpSpots.get(tmpSpots.size() - 1);
this.spaceNbOfSteps = tmpSpaceNbPoints;
spots = tmpSpots;
spaceStepSize = tmpSpaceStepSize;
spotIndex = lowerBound;
}
@Override
public EquityValuationResult calculate(
EquityValuationRequest request,
EquityForwardStructure forwardStructure,
FlatYieldCurve discountCurve,
VolatilitySurface volaSurface)
{
final var results = new HashMap();
if(request.getCalcsRequested().isEmpty()) {
return new EquityValuationResult(request, results);
}
double price = 0.0;
if(request.getCalcsRequested().contains(CalculationRequestType.EqDelta)
|| request.getCalcsRequested().contains(CalculationRequestType.EqGamma ))
{
final var spotSensis = getPdeSensis(
request.getOption(),
forwardStructure,
discountCurve,
volaSurface);
price = spotSensis[0];
if(request.getCalcsRequested().contains(CalculationRequestType.EqDelta)) {
results.put(CalculationRequestType.EqDelta, spotSensis[1]);
}
if(request.getCalcsRequested().contains(CalculationRequestType.EqGamma)) {
results.put(CalculationRequestType.EqGamma, spotSensis[2]);
}
}
else
{
price = getPrice(
request.getOption(),
forwardStructure,
discountCurve,
volaSurface);
}
if(request.getCalcsRequested().contains(CalculationRequestType.Price)) {
results.put(CalculationRequestType.Price, price);
}
if(request.getCalcsRequested().contains(CalculationRequestType.EqVega))
{
final var volShift = 0.0001; // TODO Make part of class members
final var priceShifted = getPrice(
request.getOption(),
forwardStructure,
discountCurve,
volaSurface.getShiftedSurface(volShift));
results.put(CalculationRequestType.EqVega, (priceShifted - price) / volShift);
}
return new EquityValuationResult(request, results);
}
public double getPrice(
Option option,
EquityForwardStructure forwardStructure,
FlatYieldCurve discountCurve,
VolatilitySurface volSurface)
{
return evolvePde(option, forwardStructure, discountCurve, volSurface, false)[0];
}
public double[] getPdeSensis(
Option option,
EquityForwardStructure forwardStructure,
FlatYieldCurve discountCurve,
VolatilitySurface volSurface)
{
return evolvePde(option, forwardStructure, discountCurve, volSurface, true);
}
public double getVega(
Option option,
EquityForwardStructure forwardStructure,
FlatYieldCurve discountCurve,
VolatilitySurface volSurface,
double basePrice,
double volShift)
{
final var shiftedPrice = getPrice(option, forwardStructure, discountCurve, volSurface.getShiftedSurface(volShift));
return (shiftedPrice - basePrice) / volShift;
}
public double getTheta(
Option option,
EquityForwardStructure forwardStructure,
FlatYieldCurve discountCurve,
VolatilitySurface volSurface,
double basePrice)
{
final var valDate = forwardStructure.getValuationDate();
final var thetaDate = valDate.plusDays(1);
final var thetaSpot = forwardStructure.getForward(thetaDate);
final var shiftedFwdStructure = forwardStructure.cloneWithNewSpot(thetaSpot).cloneWithNewDate(thetaDate);
final var shiftedPrice = getPrice(option, shiftedFwdStructure, discountCurve, volSurface);
return (shiftedPrice - basePrice) / dayCounter.getDaycountFraction(valDate, thetaDate);
}
private double[] evolvePde(
Option option,
EquityForwardStructure forwardStructure,
FlatYieldCurve discountCurve,
VolatilitySurface volSurface,
boolean calculateSensis)
{
// Get data
final var valDate = forwardStructure.getValuationDate();
final var expiryDate = option.getExpiryDate();
final var expiryTime = dayCounter.getDaycountFraction(valDate, expiryDate);
assert !forwardStructure.getValuationDate().isAfter(expiryDate)
: "Valuation date must not be after option expiry";
final var impliedVol = volSurface.getVolatility(option.getStrike(), expiryDate, forwardStructure);
var forward = forwardStructure.getForward(expiryDate);
var fdf = forwardStructure.getFutureDividendFactor(expiryDate);
// Build matrices
final RealMatrix idMatrix = MatrixUtils.createRealIdentityMatrix(spaceNbOfSteps);
final RealMatrix tridiagMatrix = MatrixUtils.createRealMatrix(spaceNbOfSteps, spaceNbOfSteps);
final double spaceStepSq = spaceStepSize * spaceStepSize;
for (int i = 0; i < spaceNbOfSteps; i++) {
for (int j = 0; j < spaceNbOfSteps; j++) {
if (i == j)
{
tridiagMatrix.setEntry(i, j, Math.pow(spots.get(i), 2) / spaceStepSq);
}
else if (i == j - 1 || i == j + 1)
{
tridiagMatrix.setEntry(i, j, -0.5 * Math.pow(spots.get(i), 2) / spaceStepSq);
}
else
{
tridiagMatrix.setEntry(i, j, 0);
}
}
}
// Set initial values
var prices = MatrixUtils.createRealVector(new double[spaceNbOfSteps]);
for (int i = 0; i < spaceNbOfSteps; i++)
{
prices.setEntry(i, option.getPayoff((forward - fdf) * spots.get(i) + fdf));
}
// Set time intervals to evolve the PDE (i.e. from dividend to dividend)
final var diviDates = forwardStructure.getDividendStream().getDividendDates();
final var anchorTimes = new ArrayList ();
anchorTimes.add(0.0);
if(includeDividendDatesInGrid)
{
for (final var date : diviDates)
{
if (date.isAfter(valDate) && date.isBefore(expiryDate))
{
anchorTimes.add(dayCounter.getDaycountFraction(valDate, date));
}
}
}
anchorTimes.add(expiryTime);
anchorTimes.sort(Comparator.comparing(pt -> pt));
var lastAtmPrice = 0.0;
var dt = 0.0;
// Evolve PDE
for (int a = anchorTimes.size() - 1; a > 0; a--)
{
// Set time steps
final var timeInterval = anchorTimes.get(a) - anchorTimes.get(a - 1);
int timeNbOfSteps;
double timeStepSize;
if (timeStepsPerYear == 0) // Use optimal ratio of time and space step size
{
timeNbOfSteps = (int)Math.ceil(2 * impliedVol * Math.pow(timeInterval, 1.5) / spaceStepSize);
timeStepSize = timeInterval / timeNbOfSteps;
}
else // Use time step size provided externally
{
timeNbOfSteps = (int)Math.floor(timeInterval * timeStepsPerYear);
timeStepSize = timeInterval / timeNbOfSteps;
}
final var times = new ArrayList();
for (int i = 0; i <= 4; i++) {
times.add(anchorTimes.get(a) - i * 0.25 * timeStepSize);
}
for (int i = timeNbOfSteps - 2; i >= 0; i--) {
times.add(anchorTimes.get(a - 1) + i * timeStepSize);
}
// Evolve PDE in current time interval
for (int i = 1; i < times.size(); i++)
{
lastAtmPrice = prices.getEntry(spotIndex);
dt = times.get(i-1) - times.get(i);
double theta = 0.5;
if (i <= 4) {
theta = 1.0;
}
final var theta1 = 1.0 - theta;
final var volSq = impliedVol * impliedVol;
RealMatrix implicitMatrix, explicitMatrix;
if (isLvPricer)
{
implicitMatrix = tridiagMatrix.scalarMultiply(theta * dt);
explicitMatrix = tridiagMatrix.scalarMultiply(-theta1 * dt);
final var localVol = new double[spaceNbOfSteps];
for (int s = 0; s < spaceNbOfSteps; s++)
{
final var lv = volSurface.getLocalVolatility(
Math.log(spots.get(s)), times.get(i-1), forwardStructure, spaceStepSize, dt);
localVol[s] = lv * lv;
}
final var volaMatrix = MatrixUtils.createRealDiagonalMatrix(localVol);
implicitMatrix = volaMatrix.multiply(implicitMatrix);
explicitMatrix = volaMatrix.multiply(explicitMatrix);
}
else
{
implicitMatrix = tridiagMatrix.scalarMultiply(theta * dt * volSq);
explicitMatrix = tridiagMatrix.scalarMultiply(-theta1 * dt * volSq);
}
implicitMatrix = idMatrix.add(implicitMatrix);
explicitMatrix = idMatrix.add(explicitMatrix);
if (option.isAmericanOption())
{
// Use the penalty algorithm from Forsyth's 2001 paper to solve the
// linear complementary problem for the American exercise feature.
final var penaltyFactor = 1 / Math.min(timeStepSize * timeStepSize, spaceStepSize * spaceStepSize);
forward = forwardStructure.getForward(times.get(i));
fdf = forwardStructure.getFutureDividendFactor(times.get(i));
final var discountFactor = discountCurve.getForwardDiscountFactor(times.get(i), expiryTime);
final var payoffs = MatrixUtils.createRealVector(new double[spaceNbOfSteps]);
final var penaltyMatrix = MatrixUtils.createRealMatrix(spaceNbOfSteps, spaceNbOfSteps);
for (int j = 1; j < spaceNbOfSteps - 1; j++)
{
final var payoff = option.getPayoff((forward - fdf) * spots.get(j) + fdf)
/ discountFactor;
payoffs.setEntry(j, payoff);
penaltyMatrix.setEntry(j, j, prices.getEntry(j) < payoff ? penaltyFactor : 0);
}
final var b = explicitMatrix.operate(prices);
var oldPrices = prices.copy();
final var oldPenaltyMatrix = penaltyMatrix.copy();
final var tol = 1 / penaltyFactor;
int iterations = 0;
while (true)
{
assert iterations++ < 100 : "Penalty algorithm for american exercise did not converge in 100 steps";
final var c = b.add(penaltyMatrix.operate(payoffs));
final var A = implicitMatrix.add(penaltyMatrix);
final DecompositionSolver solver = new LUDecomposition(A).getSolver();
prices = solver.solve(c);
for (int j = 1; j < spaceNbOfSteps - 1; j++)
{
penaltyMatrix.setEntry(j, j, prices.getEntry(j) < payoffs.getEntry(j) ? penaltyFactor : 0);
}
if (penaltyMatrix.equals(oldPenaltyMatrix)
|| (prices.subtract(oldPrices).getLInfNorm())
/ Math.max(oldPrices.getLInfNorm(), 1.0) < tol)
{
break;
}
oldPrices = prices.copy();
}
}
else
{
// Solve the PDE step directly
prices = explicitMatrix.operate(prices);
final DecompositionSolver solver = new LUDecomposition(implicitMatrix).getSolver();
prices = solver.solve(prices);
}
// Set boundary conditions
prices.setEntry(0, option.getPayoff((forward - fdf) * spaceMinForwardMultiple + fdf));
prices.setEntry(spaceNbOfSteps - 1, option.getPayoff((forward - fdf) * spaceMaxForwardMultiple + fdf));
}
}
final var discountFactor = discountCurve.getDiscountFactor(expiryDate);
final var price = discountFactor * prices.getEntry(spotIndex);
if (calculateSensis)
{
final var dFdX = forwardStructure.getDividendAdjustedStrike(
forwardStructure.getForward(expiryDate), expiryDate);
final var dFdS = forwardStructure.getGrowthDiscountFactor(valDate, expiryDate);
final var delta = discountFactor * 0.5
* (prices.getEntry(spotIndex + 1) - prices.getEntry(spotIndex - 1)) / spaceStepSize
* dFdS / dFdX;
final var gamma = discountFactor * (prices.getEntry(spotIndex + 1) + prices.getEntry(spotIndex - 1)
- 2 * prices.getEntry(spotIndex)) / spaceStepSq * dFdS * dFdS / dFdX / dFdX;
final var discountFactorTheta = discountCurve.getDiscountFactor(expiryTime - dt);
final var theta = (discountFactorTheta * lastAtmPrice - price) / dt;
return new double[] {price, delta, gamma, theta};
}
else
{
return new double[] {price, Double.NaN, Double.NaN, Double.NaN};
}
}
public double getImpliedVolatility(
Option option,
EquityForwardStructure forwardStructure,
FlatYieldCurve discountCurve,
double price)
{
double initialGuess = 0.25;
final var forward = forwardStructure.getForward(option.getExpiryDate());
// Use analytic pricer as initial guess for Europeans and OTM Americans
// Use two bisection steps for ITM Americans
if(option.isAmericanOption() && option.getPayoff(forward) > 0.0)
{
final var bisectionSolver = new BisectionSearch(0.00001,1.0);
for (int i = 0; i < 3; i++)
{
final double currentVol = bisectionSolver.getNextPoint();
final double currentPrice = getPrice(
option,
forwardStructure,
discountCurve,
new FlatVolatilitySurface(currentVol));
bisectionSolver.setValue(currentPrice - price);
}
initialGuess = bisectionSolver.getBestPoint();
}
else
{
final var anaPricer = new AnalyticOptionValuation(dayCounter);
Option testOption;
if(option.isAmericanOption()) {
testOption = new EuropeanOption(option.getExpiryDate(), option.getStrike(), option.isCallOption());
} else {
testOption = option;
}
initialGuess = anaPricer.getImpliedVolatility(testOption, forwardStructure, discountCurve, price);
}
// Solve for implied vol
final var solver = new SecantMethod(initialGuess, initialGuess * 1.01);
while(solver.getAccuracy() / price > 1e-3 && !solver.isDone()) {
final double currentVol = solver.getNextPoint();
final double currentPrice = getPrice(
option,
forwardStructure,
discountCurve,
new FlatVolatilitySurface(currentVol));
solver.setValue(currentPrice - price);
}
return Math.abs(solver.getBestPoint()); // Note that the PDE only uses sigma^2
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy