net.finmath.finitedifference.solvers.FDMThetaMethod Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.finitedifference.solvers;
import java.util.function.DoubleUnaryOperator;
import org.apache.commons.math3.linear.DecompositionSolver;
import org.apache.commons.math3.linear.LUDecomposition;
import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.RealMatrix;
import net.finmath.finitedifference.models.FiniteDifference1DBoundary;
import net.finmath.finitedifference.models.FiniteDifference1DModel;
/**
* One dimensional finite difference solver.
* Theta method for local volatility PDE.
* This is where the real stuff happens.
*
* @author Ralph Rudd
* @author Christian Fries
* @author Jörg Kienitz
*/
public class FDMThetaMethod {
private final FiniteDifference1DModel model;
private final FiniteDifference1DBoundary boundaryCondition;
private final double theta;
private final double center;
private final double timeHorizon;
public FDMThetaMethod(FiniteDifference1DModel model, FiniteDifference1DBoundary boundaryCondition, double timeHorizon, double center, double theta) {
this.model = model;
this.boundaryCondition = boundaryCondition;
this.timeHorizon = timeHorizon;
this.center = center;
this.theta = theta;
}
public double[][] getValue(double evaluationTime, double time, DoubleUnaryOperator valueAtMaturity) {
if(evaluationTime != 0) {
throw new IllegalArgumentException("Evaluation time != 0 not supported.");
}
if(time != timeHorizon) {
throw new IllegalArgumentException("Given time != timeHorizon not supported.");
}
// Grid Generation
final double maximumStockPriceOnGrid = model.getForwardValue(timeHorizon)
+ model.getNumStandardDeviations() * Math.sqrt(model.varianceOfStockPrice(timeHorizon));
final double minimumStockPriceOnGrid = Math.max(model.getForwardValue(timeHorizon)
- model.getNumStandardDeviations() * Math.sqrt(model.varianceOfStockPrice(timeHorizon)), 0);
final double deltaStock = (maximumStockPriceOnGrid - minimumStockPriceOnGrid) / model.getNumSpacesteps();
final double deltaTau = timeHorizon / model.getNumTimesteps();
// Create interior spatial array of stock prices
final int spaceLength = model.getNumSpacesteps() - 1;
final double[] stock = new double[spaceLength];
for (int i= 0; i < spaceLength; i++) {
stock[i] = minimumStockPriceOnGrid + (i + 1) * deltaStock;
}
// Create time-reversed tau array
final int timeLength = model.getNumTimesteps() + 1;
final double[] tau = new double[timeLength];
for (int i = 0; i < timeLength; i++) {
tau[i] = i * deltaTau;
}
// Create constant matrices
final RealMatrix eye = MatrixUtils.createRealIdentityMatrix(spaceLength);
final RealMatrix D1 = MatrixUtils.createRealMatrix(spaceLength, spaceLength);
final RealMatrix D2 = MatrixUtils.createRealMatrix(spaceLength, spaceLength);
final RealMatrix T1 = MatrixUtils.createRealMatrix(spaceLength, spaceLength);
final RealMatrix T2 = MatrixUtils.createRealMatrix(spaceLength, spaceLength);
for (int i = 0; i < spaceLength; i++) {
for (int j = 0; j < spaceLength; j++) {
if (i == j) {
D1.setEntry(i, j, minimumStockPriceOnGrid / deltaStock + (i + 1));
D2.setEntry(i, j, Math.pow(minimumStockPriceOnGrid / deltaStock + (i + 1), 2));
T2.setEntry(i, j, -2);
} else if (i == j - 1) {
T1.setEntry(i, j, 1);
T2.setEntry(i, j, 1);
} else if (i == j + 1) {
T1.setEntry(i, j, -1);
T2.setEntry(i, j, 1);
} else {
D1.setEntry(i, j, 0);
D2.setEntry(i, j, 0);
T1.setEntry(i, j, 0);
T2.setEntry(i, j, 0);
}
}
}
final RealMatrix F1 = eye.scalarMultiply(1 - model.getRiskFreeRate() * deltaTau);
final RealMatrix F2 = D1.scalarMultiply(0.5 * model.getRiskFreeRate() * deltaTau).multiply(T1);
final RealMatrix F3 = D2.scalarMultiply(0.5 * deltaTau).multiply(T2);
final RealMatrix G1 = eye.scalarMultiply(1 + model.getRiskFreeRate() * deltaTau);
final RealMatrix G2 = F2.scalarMultiply(-1);
final RealMatrix G3 = F3.scalarMultiply(-1);
// Initialize boundary and solution vectors
final RealMatrix b = MatrixUtils.createRealMatrix(spaceLength, 1);
final RealMatrix b2 = MatrixUtils.createRealMatrix(spaceLength, 1);
RealMatrix U = MatrixUtils.createRealMatrix(spaceLength, 1);
for (int i = 0; i < spaceLength; i++) {
b.setEntry(i, 0, 0);
b2.setEntry(i, 0, 0);
U.setEntry(i, 0, valueAtMaturity.applyAsDouble(stock[i]));
}
// Theta finite difference method
for (int m = 0; m < model.getNumTimesteps(); m++) {
final double[] sigma = new double[spaceLength];
final double[] sigma2 = new double[spaceLength];
for (int i = 0; i < spaceLength; i++) {
sigma[i] = Math.pow(model.getLocalVolatility(minimumStockPriceOnGrid + (i + 1) * deltaStock,
timeHorizon - m * deltaTau), 2);
sigma2[i] = Math.pow(model.getLocalVolatility(minimumStockPriceOnGrid + (i + 1) * deltaStock,
timeHorizon - (m + 1) * deltaTau), 2);
}
final RealMatrix Sigma = MatrixUtils.createRealDiagonalMatrix(sigma);
final RealMatrix Sigma2 = MatrixUtils.createRealDiagonalMatrix(sigma2);
final RealMatrix F = F1.add(F2).add(Sigma.multiply(F3));
final RealMatrix G = G1.add(G2).add(Sigma2.multiply(G3));
final RealMatrix H = G.scalarMultiply(theta).add(eye.scalarMultiply(1 - theta));
final DecompositionSolver solver = new LUDecomposition(H).getSolver();
final double Sl = (minimumStockPriceOnGrid / deltaStock + 1);
final double Su = (maximumStockPriceOnGrid / deltaStock - 1);
final double vl = Math.pow(model.getLocalVolatility(minimumStockPriceOnGrid + deltaStock,
timeHorizon - m * deltaTau), 2);
final double vu = Math.pow(model.getLocalVolatility(maximumStockPriceOnGrid - deltaStock,
timeHorizon - m * deltaTau), 2);
final double vl2 = Math.pow(model.getLocalVolatility(minimumStockPriceOnGrid + deltaStock,
timeHorizon - (m + 1) * deltaTau), 2);
final double vu2 = Math.pow(model.getLocalVolatility(maximumStockPriceOnGrid - deltaStock,
timeHorizon - (m + 1) * deltaTau), 2);
final double test = timeReversedUpperBoundary(maximumStockPriceOnGrid, tau[m]);
b.setEntry(0, 0,
0.5 * deltaTau * Sl * (vl * Sl - model.getRiskFreeRate()) * timeReversedLowerBoundary(minimumStockPriceOnGrid, tau[m]));
b.setEntry(spaceLength - 1, 0,
0.5 * deltaTau * Su * (vu * Su + model.getRiskFreeRate()) * timeReversedUpperBoundary(maximumStockPriceOnGrid, tau[m]));
b2.setEntry(0, 0,
0.5 * deltaTau * Sl * (vl2 * Sl - model.getRiskFreeRate()) * timeReversedLowerBoundary(minimumStockPriceOnGrid, tau[m + 1]));
b2.setEntry(spaceLength - 1, 0,
0.5 * deltaTau * Su * (vu2 * Su + model.getRiskFreeRate()) * timeReversedUpperBoundary(maximumStockPriceOnGrid, tau[m + 1]));
final RealMatrix U1 = (F.scalarMultiply(1 - theta).add(eye.scalarMultiply(theta))).multiply(U);
final RealMatrix U2 = b.scalarMultiply(1 - theta).add(b2.scalarMultiply(theta));
U = solver.solve(U1.add(U2));
}
final double[] optionPrice = U.getColumn(0);
final double[][] stockAndOptionPrice = new double[2][spaceLength];
stockAndOptionPrice[0] = stock;
stockAndOptionPrice[1] = optionPrice;
return stockAndOptionPrice;
}
// Time-reversed Boundary Conditions
// private double U_initial(double stockPrice, double tau) {
// return valueAtMaturity
// }
private double timeReversedLowerBoundary(double stockPrice, double tau) {
return boundaryCondition.getValueAtLowerBoundary(model, timeHorizon - tau, stockPrice);
}
private double timeReversedUpperBoundary(double stockPrice, double tau) {
return boundaryCondition.getValueAtUpperBoundary(model, timeHorizon - tau, stockPrice);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy