net.finmath.fouriermethod.calibration.models.CalibratableMertonModel Maven / Gradle / Ivy
package net.finmath.fouriermethod.calibration.models;
import java.util.Arrays;
import net.finmath.fouriermethod.calibration.ScalarParameterInformation;
import net.finmath.fouriermethod.calibration.ScalarParameterInformationImplementation;
import net.finmath.fouriermethod.calibration.Unconstrained;
import net.finmath.fouriermethod.models.MertonModel;
import net.finmath.modelling.ModelDescriptor;
import net.finmath.modelling.descriptor.MertonModelDescriptor;
/**
* This class is creates new instances of MertonModel and communicates with the optimization algorithm.
*
* This class provides clones of herself: in such a way the information concerning constraints is not lost.
*
* The method getCharacteristicFunction is then passed to the FFT pricing routine.
*
* @author Alessandro Gnoatto
*/
public class CalibratableMertonModel implements CalibratableProcess{
private final MertonModelDescriptor descriptor;
private final ScalarParameterInformation volatilityInfo;
private final ScalarParameterInformation jumpIntensityInfo;
private final ScalarParameterInformation jumpSizeMeanInfo;
private final ScalarParameterInformation jumpSizeStdDevInfo;
/*
* Upper and lower bounds are collected here for convenience:
* such vectors are then passed to the factory of the optimization algorithm.
* In this way we guarantee consistency between the constraints in the model
* and the constraints in the optimizer factory.
*/
private final double[] parameterUpperBounds;
private final double[] parameterLowerBounds;
/**
* Basic constructor where all parameters are to be calibrated.
* All parameters are unconstrained.
*
* @param descriptor The model descriptor for the Merton model.
*/
public CalibratableMertonModel(final MertonModelDescriptor descriptor) {
super();
this.descriptor = descriptor;
volatilityInfo = new ScalarParameterInformationImplementation(true, new Unconstrained());
jumpIntensityInfo = new ScalarParameterInformationImplementation(true, new Unconstrained());
jumpSizeMeanInfo = new ScalarParameterInformationImplementation(true, new Unconstrained());
jumpSizeStdDevInfo = new ScalarParameterInformationImplementation(true, new Unconstrained());
parameterUpperBounds = extractUpperBounds();
parameterLowerBounds = extractLowerBounds();
}
/**
* This constructor allows for the specification of constraints.
* This is very liberal since we can impose different types of constraints.
* The choice on the parameters to be applied is left to the user.
* This implies that he user could create Merton models which are not meaningful.
*
* @param descriptor The model descriptor for the Merton model.
* @param volatilityInfo The volatility constraint.
* @param jumpIntensityInfo The constraint for the jump intensity parameter.
* @param jumpSizeMeanInfo The constraint for the jump size mean parameter.
* @param jumpSizeStdDevInfo The constraint for the jump standard deviation parameter.
*/
public CalibratableMertonModel(final MertonModelDescriptor descriptor, final ScalarParameterInformation volatilityInfo,
final ScalarParameterInformation jumpIntensityInfo, final ScalarParameterInformation jumpSizeMeanInfo,
final ScalarParameterInformation jumpSizeStdDevInfo) {
super();
this.descriptor = descriptor;
this.volatilityInfo = volatilityInfo;
this.jumpIntensityInfo = jumpIntensityInfo;
this.jumpSizeMeanInfo = jumpSizeMeanInfo;
this.jumpSizeStdDevInfo = jumpSizeStdDevInfo;
parameterUpperBounds = extractUpperBounds();
parameterLowerBounds = extractLowerBounds();
}
@Override
public CalibratableProcess getCloneForModifiedParameters(final double[] parameters) {
//If the parameters are to be calibrated we update the value, otherwise we use the stored one.
final double volatility = volatilityInfo.getIsParameterToCalibrate() == true ? volatilityInfo.getConstraint().apply(parameters[0]) : descriptor.getVolatility();
final double jumpIntensity = jumpIntensityInfo.getIsParameterToCalibrate() == true ? jumpIntensityInfo.getConstraint().apply(parameters[1]) : descriptor.getJumpIntensity();
final double jumpSizeMean = jumpSizeMeanInfo.getIsParameterToCalibrate() == true ? jumpSizeMeanInfo.getConstraint().apply(parameters[2]) : descriptor.getJumpSizeMean();
final double jumpSizeStdDev = jumpSizeStdDevInfo.getIsParameterToCalibrate() == true ? jumpSizeStdDevInfo.getConstraint().apply(parameters[3]) : descriptor.getJumpSizeStdDev();
final MertonModelDescriptor newDescriptor = new MertonModelDescriptor(descriptor.getReferenceDate(),
descriptor.getInitialValue(),descriptor.getDiscountCurveForForwardRate(),descriptor.getDiscountCurveForDiscountRate(),
volatility,jumpIntensity,jumpSizeMean,jumpSizeStdDev);
return new CalibratableMertonModel(newDescriptor,volatilityInfo,jumpIntensityInfo,jumpSizeMeanInfo,jumpSizeStdDevInfo);
}
@Override
public ModelDescriptor getModelDescriptor() {
return descriptor;
}
@Override
public MertonModel getCharacteristicFunctionModel() {
return new MertonModel(descriptor.getReferenceDate(),descriptor.getInitialValue(),descriptor.getDiscountCurveForForwardRate(),
descriptor.getDiscountCurveForDiscountRate(),descriptor.getVolatility(),
descriptor.getJumpIntensity(),descriptor.getJumpSizeMean(),descriptor.getJumpSizeStdDev());
}
@Override
public double[] getParameterLowerBounds() {
return parameterLowerBounds;
}
@Override
public double[] getParameterUpperBounds() {
return parameterUpperBounds;
}
private double[] extractUpperBounds() {
final double[] upperBounds = new double[4];
final double threshold = 1E6;
upperBounds[0] = volatilityInfo.getConstraint().getUpperBound() > threshold ? threshold : volatilityInfo.getConstraint().getUpperBound();
upperBounds[1] = jumpIntensityInfo.getConstraint().getUpperBound() > threshold ? threshold : jumpIntensityInfo.getConstraint().getUpperBound();
upperBounds[2] = jumpSizeMeanInfo.getConstraint().getUpperBound() > threshold ? threshold : jumpSizeMeanInfo.getConstraint().getUpperBound();
upperBounds[3] = jumpSizeStdDevInfo.getConstraint().getUpperBound() > threshold ? threshold : jumpSizeStdDevInfo.getConstraint().getUpperBound();
return upperBounds;
}
private double[] extractLowerBounds() {
final double[] upperBounds = new double[4];
final double threshold = -1E6;
upperBounds[0] = volatilityInfo.getConstraint().getLowerBound() < threshold ? threshold : volatilityInfo.getConstraint().getLowerBound();
upperBounds[1] = jumpIntensityInfo.getConstraint().getLowerBound() < threshold ? threshold : jumpIntensityInfo.getConstraint().getLowerBound();
upperBounds[2] = jumpSizeMeanInfo.getConstraint().getLowerBound() < threshold ? threshold : jumpSizeMeanInfo.getConstraint().getLowerBound();
upperBounds[3] = jumpSizeStdDevInfo.getConstraint().getLowerBound() < threshold ? threshold : jumpSizeStdDevInfo.getConstraint().getLowerBound();
return upperBounds;
}
/* (non-Javadoc)
* @see java.lang.Object#toString()
*/
@Override
public String toString() {
return "CalibratableMertonModel [descriptor=" + descriptor + ", volatilityInfo=" + volatilityInfo
+ ", jumpIntensityInfo=" + jumpIntensityInfo + ", jumpSizeMeanInfo=" + jumpSizeMeanInfo
+ ", jumpSizeStdDevInfo=" + jumpSizeStdDevInfo + ", parameterUpperBounds="
+ Arrays.toString(parameterUpperBounds) + ", parameterLowerBounds="
+ Arrays.toString(parameterLowerBounds) + "]";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy