net.finmath.fouriermethod.calibration.models.CalibratableVarianceGammaModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.fouriermethod.calibration.models;
import net.finmath.fouriermethod.calibration.ScalarParameterInformation;
import net.finmath.fouriermethod.calibration.ScalarParameterInformationImplementation;
import net.finmath.fouriermethod.calibration.Unconstrained;
import net.finmath.fouriermethod.models.CharacteristicFunctionModel;
import net.finmath.fouriermethod.models.VarianceGammaModel;
import net.finmath.modelling.ModelDescriptor;
import net.finmath.modelling.descriptor.VarianceGammaModelDescriptor;
/**
* This class is creates new instances of VarianceGammaModel and communicates with the optimization algorithm.
*
* This class provides clones of herself: in such a way the information concerning constraints is not lost.
*
* The method getCharacteristicFunction is then passed to the FFT pricing routine.
*
* @author Alessandro Gnoatto
*/
public class CalibratableVarianceGammaModel implements CalibratableProcess {
private final VarianceGammaModelDescriptor descriptor;
private final ScalarParameterInformation sigmaInfo;
private final ScalarParameterInformation thetaInfo;
private final ScalarParameterInformation nuInfo;
/*
* Upper and lower bounds are collected here for convenience:
* such vectors are then passed to the factory of the optimization algorithm.
* In this way we guarantee consistency between the constraints in the model
* and the constraints in the optimizer factory.
*/
private final double[] parameterUpperBounds;
private final double[] parameterLowerBounds;
/**
* Basic constructor where all parameters are to be calibrated.
* All parameters are unconstrained.
*
* @param descriptor The model descriptor for the Variance Gamma model.
*/
public CalibratableVarianceGammaModel(VarianceGammaModelDescriptor descriptor) {
super();
this.descriptor = descriptor;
this.sigmaInfo = new ScalarParameterInformationImplementation(true, new Unconstrained());
this.thetaInfo = new ScalarParameterInformationImplementation(true, new Unconstrained());
this.nuInfo = new ScalarParameterInformationImplementation(true, new Unconstrained());
this.parameterUpperBounds = extractUpperBounds();
this.parameterLowerBounds = extractLowerBounds();
}
/**
*
* @param descriptor The model descriptor for the Variance Gamma model.
* @param sigmaInfo A constraint for the parameter sigma.
* @param thetaInfo A constraint for the parameter theta.
* @param nuInfo A constraint for the parameter nu.
*/
public CalibratableVarianceGammaModel(VarianceGammaModelDescriptor descriptor, ScalarParameterInformation sigmaInfo,
ScalarParameterInformation thetaInfo, ScalarParameterInformation nuInfo) {
this.descriptor = descriptor;
this.sigmaInfo = sigmaInfo;
this.thetaInfo = thetaInfo;
this.nuInfo = nuInfo;
this.parameterUpperBounds = extractUpperBounds();
this.parameterLowerBounds = extractLowerBounds();
}
@Override
public CalibratableProcess getCloneForModifiedParameters(double[] parameters) {
//If the parameters are to be calibrated we update the value, otherwise we use the stored one.
final double sigma = sigmaInfo.getIsParameterToCalibrate() == true ? sigmaInfo.getConstraint().apply(parameters[0]) : descriptor.getSigma();
final double theta = thetaInfo.getIsParameterToCalibrate() == true ? thetaInfo.getConstraint().apply(parameters[1]) : descriptor.getTheta();
final double nu = nuInfo.getIsParameterToCalibrate() == true ? nuInfo.getConstraint().apply(parameters[2]) : descriptor.getNu();
final VarianceGammaModelDescriptor newDescriptor = new VarianceGammaModelDescriptor(descriptor.getReferenceDate(),
descriptor.getInitialValue(),descriptor.getDiscountCurveForForwardRate(), descriptor.getDiscountCurveForDiscountRate(),
sigma, theta, nu);
return new CalibratableVarianceGammaModel(newDescriptor,sigmaInfo, thetaInfo, nuInfo);
}
@Override
public ModelDescriptor getModelDescriptor() {
return descriptor;
}
@Override
public CharacteristicFunctionModel getCharacteristicFunctionModel() {
return new VarianceGammaModel(null, descriptor.getInitialValue(),descriptor.getDiscountCurveForForwardRate(),
descriptor.getDiscountCurveForDiscountRate(), descriptor.getSigma(), descriptor.getTheta(), descriptor.getNu());
}
@Override
public double[] getParameterLowerBounds() {
return parameterLowerBounds;
}
@Override
public double[] getParameterUpperBounds() {
return parameterUpperBounds;
}
private double[] extractUpperBounds() {
final double[] upperBounds = new double[3];
final double threshold = 1E6;
upperBounds[0] = sigmaInfo.getConstraint().getUpperBound() > threshold ? threshold : sigmaInfo.getConstraint().getUpperBound();
upperBounds[1] = thetaInfo.getConstraint().getUpperBound() > threshold ? threshold : thetaInfo.getConstraint().getUpperBound();
upperBounds[2] = nuInfo.getConstraint().getUpperBound() > threshold ? threshold : nuInfo.getConstraint().getUpperBound();
return upperBounds;
}
private double[] extractLowerBounds() {
final double[] upperBounds = new double[3];
final double threshold = -1E6;
upperBounds[0] = sigmaInfo.getConstraint().getLowerBound() < threshold ? threshold : sigmaInfo.getConstraint().getLowerBound();
upperBounds[1] = thetaInfo.getConstraint().getLowerBound() < threshold ? threshold : thetaInfo.getConstraint().getLowerBound();
upperBounds[2] = nuInfo.getConstraint().getLowerBound() < threshold ? threshold : nuInfo.getConstraint().getLowerBound();
return upperBounds;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy