All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.fouriermethod.products.DigitalOption Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 23.03.2014
 */
package net.finmath.fouriermethod.products;

import org.apache.commons.math3.complex.Complex;

/**
 * Implements valuation of a European option on a single asset.
 *
 * Given a model for an asset S, the European option with strike K, maturity T
 * pays
 * 
* indicator(S(T) - K) in T *
* * The class implements the characteristic function of the call option * payoff, i.e., its Fourier transform. * * @author Christian Fries * @version 1.0 */ public class DigitalOption extends AbstractFourierTransformProduct { private final double maturity; private final double strike; private final String nameOfUnderlying; /** * Construct a product representing an European option on an asset S (where S the asset with index 0 from the model - single asset case). * @param maturity The maturity T in the option payoff max(S(T)-K,0) * @param strike The strike K in the option payoff max(S(T)-K,0). */ public DigitalOption(final double maturity, final double strike) { super(); this.maturity = maturity; this.strike = strike; nameOfUnderlying = null; // Use asset with index 0 } /* (non-Javadoc) * @see net.finmath.fouriermethod.CharacteristicFunctionInterface#apply(org.apache.commons.math3.complex.Complex) */ @Override public Complex apply(final Complex argument) { final Complex iargument = argument.multiply(Complex.I); final Complex exponent = iargument.add(1.0); final Complex numerator = (new Complex(strike)).pow(exponent.subtract(1.0)).multiply(exponent); final Complex denominator = (argument.multiply(argument)).subtract(iargument); return numerator.divide(denominator); } /* (non-Javadoc) * @see net.finmath.fouriermethod.products.AbstractProductFourierTransform#getMaturity() */ @Override public double getMaturity() { return maturity; } /* (non-Javadoc) * @see net.finmath.fouriermethod.products.AbstractProductFourierTransform#getDomainImagLowerBound() */ @Override public double getIntegrationDomainImagLowerBound() { return 0.5; } /* (non-Javadoc) * @see net.finmath.fouriermethod.products.AbstractProductFourierTransform#getDomainImagUpperBound() */ @Override public double getIntegrationDomainImagUpperBound() { return 2.5; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy