All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.functions.BachelierModel Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
/*
 * Created on 23.01.2004.
 *
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 */
package net.finmath.functions;

import net.finmath.optimizer.GoldenSectionSearch;
import net.finmath.stochastic.RandomVariable;

/**
 * This class implements some functions as static class methods related to the Bachelier model.
 *
 * There are different variants of the Bachelier model, depending on if the volatility of the stock
 * or the volatility of the forward are assumed to be constant.
 *
 * 
*
Bachelier model
*
the model for a forward F(t) following dF = sigma dW, valuing the option max(F(T)-K,0) * N(T)
* *
Homogeneous Bachelier model
*
the model for a stock S(t) following dS = rS dt + sigma exp(rt) dW, valuing the option max(S(T)-K,0)
* *
Inhomogeneous Bachelier model
*
the model for a stock S(t) following dS = rS dt + sigma dW, valuing the option max(S(T)-K,0)
*
* * The class {@link net.finmath.montecarlo.assetderivativevaluation.models.BachelierModel} is the Monte-Carlo * implementation of a Homogeneous Bachelier model. * * The class {@link net.finmath.montecarlo.assetderivativevaluation.models.InhomogenousBachelierModel} is the Monte-Carlo * implementation of a Inhomogeneous Bachelier model. * * @see net.finmath.montecarlo.assetderivativevaluation.models.BachelierModel * @see net.finmath.montecarlo.assetderivativevaluation.models.InhomogenousBachelierModel * * @author Christian Fries * @version 1.11 * @date 27.04.2012 */ public class BachelierModel { // Suppress default constructor for non-instantiability private BachelierModel() { // This constructor will never be invoked } /** * Calculates the option value of a call, i.e., the payoff max(S(T)-K,0), where S follows a * normal process with numeraire scaled volatility, i.e., a homogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma exp(-r (T-t)) \mathrm{d}W(t) * \] * * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma \mathrm{d}W(t) \text{.} * \] * * @param forward The forward of the underlying \( F(0) = S(0)/N(0) = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \) of the forward process. * @param optionMaturity The option maturity T. * @param optionStrike The option strike K. * @param payoffUnit The payoff unit (e.g., the discount factor \( N(0)/N(T) = \exp(-r T) \)) * @return Returns the value of a European call option under the Bachelier model. */ public static double bachelierOptionValue( final double forward, final double volatility, final double optionMaturity, final double optionStrike, final double payoffUnit) { if(optionMaturity < 0) { return 0; } else if(forward == optionStrike) { return volatility * Math.sqrt(optionMaturity / Math.PI / 2.0) * payoffUnit; } else { // Calculate analytic value final double dPlus = (forward - optionStrike) / (volatility * Math.sqrt(optionMaturity)); final double valueAnalytic = ((forward - optionStrike) * NormalDistribution.cumulativeDistribution(dPlus) + volatility * Math.sqrt(optionMaturity) * NormalDistribution.density(dPlus)) * payoffUnit; return valueAnalytic; } } /** * Calculates the option value of a call, i.e., the payoff max(S(T)-K,0), where S follows a * normal process with numeraire scaled volatility, i.e., a homogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma exp(-r (T-t)) \mathrm{d}W(t) * \] * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma \mathrm{d}W(t) \text{.} * \] * * @param forward The forward of the underlying \( F(0) = S(0)/N(0) = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \) of the forward process. * @param optionMaturity The option maturity T. * @param optionStrike The option strike K. * @param payoffUnit The payoff unit (e.g., the discount factor \( N(0)/N(T) = exp(-r T) \)) * @return Returns the value of a European call option under the Bachelier model. */ public static RandomVariable bachelierOptionValue( final RandomVariable forward, final RandomVariable volatility, final double optionMaturity, final double optionStrike, final RandomVariable payoffUnit) { if(optionMaturity < 0) { return forward.mult(0.0); } else { final RandomVariable integratedVolatility = volatility.mult(Math.sqrt(optionMaturity)); final RandomVariable dPlus = forward.sub(optionStrike).div(integratedVolatility); final RandomVariable valueAnalytic = dPlus.apply(NormalDistribution::cumulativeDistribution).mult(forward.sub(optionStrike)) .add(dPlus.apply(NormalDistribution::density).mult(integratedVolatility)).mult(payoffUnit); return valueAnalytic; } } /** * Calculates the Bachelier option implied volatility of a call, i.e., the payoff max(S(T)-K,0), where S follows a * normal process with numeraire scaled volatility, i.e., a homogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma exp(-r (T-t)) \mathrm{d}W(t) * \] * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma \mathrm{d}W(t) \text{.} * \] * * @param forward The forward of the underlying. * @param optionMaturity The option maturity T. * @param optionStrike The option strike. If the option strike is ≤ 0.0 the method returns the value of the forward contract paying S(T)-K in T. * @param payoffUnit The payoff unit (e.g., the discount factor) * @param optionValue The option value. * @return Returns the implied volatility of a European call option under the Bachelier model. */ public static double bachelierOptionImpliedVolatility( final double forward, final double optionMaturity, final double optionStrike, final double payoffUnit, final double optionValue) { // Limit the maximum number of iterations, to ensure this calculation returns fast, e.g. in cases when there is no such thing as an implied vol // TODO An exception should be thrown, when there is no implied volatility for the given value. final int maxIterations = 100; final double maxAccuracy = 0.0; // Calculate an lower and upper bound for the volatility final double volatilityLowerBound = 0.0; final double volatilityUpperBound = Math.sqrt(2 * Math.PI * Math.E) * (optionValue / payoffUnit + Math.abs(forward-optionStrike)) / Math.sqrt(optionMaturity); // Solve for implied volatility final GoldenSectionSearch solver = new GoldenSectionSearch(volatilityLowerBound, volatilityUpperBound); while(solver.getAccuracy() > maxAccuracy && !solver.isDone() && solver.getNumberOfIterations() < maxIterations) { final double volatility = solver.getNextPoint(); final double valueAnalytic = bachelierOptionValue(forward, volatility, optionMaturity, optionStrike, payoffUnit); final double error = valueAnalytic - optionValue; solver.setValue(error*error); } return solver.getBestPoint(); } /** * Calculates the option delta dV(0)/dS(0) of a call option, i.e., the payoff V(T)=max(S(T)-K,0), where S follows a * normal process with numeraire scaled volatility, i.e., a homogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma exp(-r (T-t)) \mathrm{d}W(t) * \] * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma \mathrm{d}W(t) \text{.} * \] * * @param forward The forward of the underlying \( F(0) = S(0)/N(0) = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \) of the forward process. * @param optionMaturity The option maturity T. * @param optionStrike The option strike K. * @param payoffUnit The payoff unit (e.g., the discount factor \( N(0)/N(T) = exp(-r T) \)) * @return Returns the value of the option delta (dV/dS(0)) of a European call option under the Bachelier model. */ public static double bachelierOptionDelta( final double forward, final double volatility, final double optionMaturity, final double optionStrike, final double payoffUnit) { if(optionMaturity < 0) { return 0; } else if(forward == optionStrike) { return 1.0 / 2.0; } else { // Calculate analytic value final double dPlus = (forward - optionStrike) / (volatility * Math.sqrt(optionMaturity)); final double deltaAnalytic = NormalDistribution.cumulativeDistribution(dPlus); return deltaAnalytic; } } /** * Calculates the option delta dV(0)/dS(0) of a digital call option, i.e., the payoff V(T)=indicator(S(T)-K > 0), where S follows a * normal process with numeraire scaled volatility, i.e., a homogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma exp(-r (T-t)) \mathrm{d}W(t) * \] * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma \mathrm{d}W(t) \text{.} * \] * * The delta reported is \[ \frac{1}{\sigma \sqrt{T}} \phi( \frac{F-K}{\sigma \sqrt{T}} ) \], where \( \phi \) is the density of the standard normal distribution. * * Note: The delta does not depend on the argument payoffUnit, due to \( \frac{\mathrm{d}F(0)}{\mathrm{d}S(0)} = \frac{1}{N(0)} \) being equal to 1 / payoffUnit. * * @param forward The forward of the underlying \( F(0) = S(0)/N(0) = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \) of the forward process. * @param optionMaturity The option maturity T. * @param optionStrike The option strike K. * @param payoffUnit The payoff unit (e.g., the discount factor \( N(0)/N(T) = exp(-r T) \)) * @return Returns the value of the option delta (dV/dS(0)) of a European call option under the Bachelier model. */ public static double bachelierDigitalOptionDelta( final double forward, final double volatility, final double optionMaturity, final double optionStrike, final double payoffUnit) { if(optionMaturity < 0) { return 0; } else if(forward == optionStrike) { return 1.0 / Math.sqrt(2.0 * Math.PI) / (volatility * Math.sqrt(optionMaturity)); } else { // Calculate analytic value final double dPlus = (forward - optionStrike) / (volatility * Math.sqrt(optionMaturity)); final double deltaAnalytic = NormalDistribution.density(dPlus) / (volatility * Math.sqrt(optionMaturity)); return deltaAnalytic; } } /** * Calculates the option delta dV(0)/dS(0) of a call option, i.e., the payoff V(T)=max(S(T)-K,0), where S follows a * normal process with numeraire scaled volatility, i.e., a homogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma exp(-r (T-t)) \mathrm{d}W(t) * \] * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma \mathrm{d}W(t) \text{.} * \] * * @param forward The forward of the underlying \( F(0) = S(0)/N(0) = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \) of the forward process. * @param optionMaturity The option maturity T. * @param optionStrike The option strike K. * @param payoffUnit The payoff unit (e.g., the discount factor \( N(0)/N(T) = exp(-r T) \)) * @return Returns the value of the option delta (dV/dS(0)) of a European call option under the Bachelier model. */ public static RandomVariable bachelierOptionDelta( final RandomVariable forward, final RandomVariable volatility, final double optionMaturity, final double optionStrike, final RandomVariable payoffUnit) { if(optionMaturity < 0) { return forward.mult(0.0); } else { final RandomVariable integratedVolatility = volatility.mult(Math.sqrt(optionMaturity)); final RandomVariable dPlus = forward.sub(optionStrike).div(integratedVolatility); final RandomVariable deltaAnalytic = dPlus.apply(NormalDistribution::cumulativeDistribution); return deltaAnalytic; } } /** * Calculates the vega of a call, i.e., the payoff max(S(T)-K,0) P, where S follows a * normal process with numeraire scaled volatility, i.e., a homogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma exp(-r (T-t)) \mathrm{d}W(t) * \] * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma \mathrm{d}W(t) \text{.} * \] * * @param forward The forward of the underlying \( F(0) = S(0)/N(0) = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \) of the forward process. * @param optionMaturity The option maturity T. * @param optionStrike The option strike K. * @param payoffUnit The payoff unit (e.g., the discount factor \( N(0)/N(T) = exp(-r T) \)) * @return Returns the vega of a European call option under the Bachelier model. */ public static double bachelierOptionVega( final double forward, final double volatility, final double optionMaturity, final double optionStrike, final double payoffUnit) { if(optionMaturity < 0) { return 0; } else if(forward == optionStrike) { return Math.sqrt(optionMaturity / (Math.PI * 2.0)) * payoffUnit; } else { // Calculate analytic value final double dPlus = (forward - optionStrike) / (volatility * Math.sqrt(optionMaturity)); final double vegaAnalytic = Math.sqrt(optionMaturity) * NormalDistribution.density(dPlus) * payoffUnit; return vegaAnalytic; } } /** * Calculates the vega of a call, i.e., the payoff max(S(T)-K,0) P, where S follows a * normal process with numeraire scaled volatility, i.e., a homogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma exp(-r (T-t)) \mathrm{d}W(t) * \] * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma \mathrm{d}W(t) \text{.} * \] * * @param forward The forward of the underlying \( F(0) = S(0)/N(0) = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \) of the forward process. * @param optionMaturity The option maturity T. * @param optionStrike The option strike K. * @param payoffUnit The payoff unit (e.g., the discount factor \( N(0)/N(T) = exp(-r T) \)) * @return Returns the vega of a European call option under the Bachelier model. */ public static RandomVariable bachelierOptionVega( final RandomVariable forward, final RandomVariable volatility, final double optionMaturity, final double optionStrike, final RandomVariable payoffUnit) { if(optionMaturity < 0) { return forward.mult(0.0); } else { final RandomVariable integratedVolatility = volatility.mult(Math.sqrt(optionMaturity)); final RandomVariable dPlus = forward.sub(optionStrike).div(integratedVolatility); final RandomVariable vegaAnalytic = dPlus.apply(NormalDistribution::density).mult(payoffUnit).mult(Math.sqrt(optionMaturity)); return vegaAnalytic; } } /** * Calculates the option value of a call, i.e., the payoff max(S(T)-K,0), where S follows a * normal process with numeraire scaled volatility, i.e., a homogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma exp(rt) \mathrm{d}W(t) * \] * * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma / N(T) \mathrm{d}W(t) \text{.} * \] * * @param forward The forward of the underlying \( F(0) = S(0)/N(0) = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \) of the forward process. * @param optionMaturity The option maturity T. * @param optionStrike The option strike K. * @param payoffUnit The payoff unit (e.g., the discount factor \( N(0)/N(T) = exp(-r T) \)) * @return Returns the value of a European call option under the Bachelier model. */ public static double bachelierHomogeneousOptionValue( final double forward, final double volatility, final double optionMaturity, final double optionStrike, final double payoffUnit) { return bachelierOptionValue(forward, volatility/payoffUnit, optionMaturity, optionStrike, payoffUnit); } /** * Calculates the option value of a call, i.e., the payoff max(S(T)-K,0), where S follows a * normal process with numeraire scaled volatility, i.e., a homogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma exp(rt) \mathrm{d}W(t) * \] * * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma / N(T) \mathrm{d}W(t) \text{.} * \] * * @param forward The forward of the underlying \( F(0) = S(0)/N(0) = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \) of the forward process. * @param optionMaturity The option maturity T. * @param optionStrike The option strike K. * @param payoffUnit The payoff unit (e.g., the discount factor \( N(0)/N(T) = exp(-r T) \)) * @return Returns the value of a European call option under the Bachelier model. */ public static RandomVariable bachelierHomogeneousOptionValue( final RandomVariable forward, final RandomVariable volatility, final double optionMaturity, final double optionStrike, final RandomVariable payoffUnit) { return bachelierOptionValue(forward, volatility.div(payoffUnit), optionMaturity, optionStrike, payoffUnit); } /** * Calculates the Bachelier option implied volatility of a call, i.e., the payoff max(S(T)-K,0), where S follows a * normal process with numeraire scaled volatility, i.e., a homogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma exp(rt) \mathrm{d}W(t) * \] * * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma / N(T) \mathrm{d}W(t) \text{.} * \] * * @param forward The forward of the underlying. * @param optionMaturity The option maturity T. * @param optionStrike The option strike. If the option strike is ≤ 0.0 the method returns the value of the forward contract paying S(T)-K in T. * @param payoffUnit The payoff unit (e.g., the discount factor) * @param optionValue The option value. * @return Returns the implied volatility of a European call option under the Bachelier model. */ public static double bachelierHomogeneousOptionImpliedVolatility( final double forward, final double optionMaturity, final double optionStrike, final double payoffUnit, final double optionValue) { return bachelierOptionImpliedVolatility(forward, optionMaturity, optionStrike, payoffUnit, optionValue)*payoffUnit; } /** * Calculates the option delta dV(0)/dS(0) of a call option, i.e., the payoff V(T)=max(S(T)-K,0), where S follows a * normal process with numeraire scaled volatility, i.e., a homogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma exp(rt) \mathrm{d}W(t) * \] * * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma / N(T) \mathrm{d}W(t) \text{.} * \] * * * @param forward The forward of the underlying \( F(0) = S(0)/N(0) = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \) of the forward process. * @param optionMaturity The option maturity T. * @param optionStrike The option strike K. * @param payoffUnit The payoff unit (e.g., the discount factor \( N(0)/N(T) = exp(-r T) \)) * @return Returns the value of the option delta (dV/dS(0)) of a European call option under the Bachelier model. */ public static double bachelierHomogeneousOptionDelta( final double forward, final double volatility, final double optionMaturity, final double optionStrike, final double payoffUnit) { return bachelierOptionDelta(forward, volatility/payoffUnit, optionMaturity, optionStrike, payoffUnit); } /** * Calculates the option delta dV(0)/dS(0) of a call option, i.e., the payoff V(T)=max(S(T)-K,0), where S follows a * normal process with numeraire scaled volatility, i.e., a homogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma exp(rt) \mathrm{d}W(t) * \] * * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma / N(T) \mathrm{d}W(t) \text{.} * \] * * * @param forward The forward of the underlying \( F(0) = S(0)/N(0) = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \) of the forward process. * @param optionMaturity The option maturity T. * @param optionStrike The option strike K. * @param payoffUnit The payoff unit (e.g., the discount factor \( N(0)/N(T) = exp(-r T) \)) * @return Returns the value of the option delta (dV/dS(0)) of a European call option under the Bachelier model. */ public static RandomVariable bachelierHomogeneousOptionDelta( final RandomVariable forward, final RandomVariable volatility, final double optionMaturity, final double optionStrike, final RandomVariable payoffUnit) { return bachelierOptionDelta(forward, volatility.div(payoffUnit), optionMaturity, optionStrike, payoffUnit); } /** * Calculates the vega of a call, i.e., the payoff max(S(T)-K,0) P, where S follows a * normal process with numeraire scaled volatility, i.e., a homogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma exp(rt) \mathrm{d}W(t) * \] * * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma / N(T) \mathrm{d}W(t) \text{.} * \] * * @param forward The forward of the underlying \( F(0) = S(0)/N(0) = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \) of the forward process. * @param optionMaturity The option maturity T. * @param optionStrike The option strike K. * @param payoffUnit The payoff unit (e.g., the discount factor \( N(0)/N(T) = exp(-r T) \)) * @return Returns the vega of a European call option under the Bachelier model. */ public static double bachelierHomogeneousOptionVega( final double forward, final double volatility, final double optionMaturity, final double optionStrike, final double payoffUnit) { return bachelierOptionVega(forward, volatility/payoffUnit, optionMaturity, optionStrike, payoffUnit)/payoffUnit; } /** * Calculates the vega of a call, i.e., the payoff max(S(T)-K,0) P, where S follows a * normal process with numeraire scaled volatility, i.e., a homogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma exp(rt) \mathrm{d}W(t) * \] * * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma / N(T) \mathrm{d}W(t) \text{.} * \] * * @param forward The forward of the underlying \( F(0) = S(0)/N(0) = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \) of the forward process. * @param optionMaturity The option maturity T. * @param optionStrike The option strike K. * @param payoffUnit The payoff unit (e.g., the discount factor \( N(0)/N(T) = exp(-r T) \)) * @return Returns the vega of a European call option under the Bachelier model. */ public static RandomVariable bachelierHomogeneousOptionVega( final RandomVariable forward, final RandomVariable volatility, final double optionMaturity, final double optionStrike, final RandomVariable payoffUnit) { return bachelierOptionVega(forward, volatility.div(payoffUnit), optionMaturity, optionStrike, payoffUnit).div(payoffUnit); } /** * Calculates the option value of a call, i.e., the payoff max(S(T)-K,0), where S follows a * normal process with constant volatility, i.e., a inhomogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma \mathrm{d}W(t) * \] * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma exp(r (T-t)) \mathrm{d}W(t) \text{.} * \] * * @param forward The forward of the underlying \( F = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \). * @param optionMaturity The option maturity T. * @param optionStrike The option strike K. * @param payoffUnit The payoff unit (e.g., the discount factor) * @return Returns the value of a European call option under the Bachelier model. */ public static double bachelierInhomogeneousOptionValue( final double forward, final double volatility, final double optionMaturity, final double optionStrike, final double payoffUnit) { final double scaling = payoffUnit != 1 ? Math.sqrt((payoffUnit*payoffUnit-1)/(2.0*Math.log(payoffUnit))) : 1.0; final double volatilityEffective = volatility * scaling; return bachelierHomogeneousOptionValue(forward, volatilityEffective, optionMaturity, optionStrike, payoffUnit); } /** * Calculates the option value of a call, i.e., the payoff max(S(T)-K,0), where S follows a * normal process with constant volatility, i.e., a inhomogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma \mathrm{d}W(t) * \] * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma exp(r (T-t)) \mathrm{d}W(t) \text{.} * \] * * @param forward The forward of the underlying \( F = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \). * @param optionMaturity The option maturity T. * @param optionStrike The option strike. * @param payoffUnit The payoff unit (e.g., the discount factor) * @return Returns the value of a European call option under the Bachelier model. */ public static RandomVariable bachelierInhomogeneousOptionValue( final RandomVariable forward, final RandomVariable volatility, final double optionMaturity, final double optionStrike, final RandomVariable payoffUnit) { // TODO The formula fails if payoffUnit == 1 final RandomVariable volatilityEffective = volatility.mult(payoffUnit.squared().sub(1.0).div(payoffUnit.log().mult(2)).sqrt()); return bachelierHomogeneousOptionValue(forward, volatilityEffective, optionMaturity, optionStrike, payoffUnit); } /** * Calculates the Bachelier option implied volatility of a call, i.e., the payoff *

max(S(T)-K,0)

, where S follows a * normal process with constant volatility, i.e., a inhomogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma \mathrm{d}W(t) * \] * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma exp(r (T-t)) \mathrm{d}W(t) \text{.} * \] * * @param forward The forward of the underlying. * @param optionMaturity The option maturity T. * @param optionStrike The option strike. If the option strike is ≤ 0.0 the method returns the value of the forward contract paying S(T)-K in T. * @param payoffUnit The payoff unit (e.g., the discount factor) * @param optionValue The option value. * @return Returns the implied volatility of a European call option under the Bachelier model. */ public static double bachelierInhomogeneousOptionImpliedVolatility( final double forward, final double optionMaturity, final double optionStrike, final double payoffUnit, final double optionValue) { final double volatilityEffective = bachelierHomogeneousOptionImpliedVolatility(forward, optionMaturity, optionStrike, payoffUnit, optionValue); final double scaling = payoffUnit != 1 ? Math.sqrt((payoffUnit*payoffUnit-1)/(2.0*Math.log(payoffUnit))) : 1.0; final double volatility = volatilityEffective / scaling; return volatility; } /** * Calculates the option delta dV(0)/dS(0) of a call option, i.e., the payoff V(T)=max(S(T)-K,0), where S follows a * normal process with constant volatility, i.e., a inhomogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma \mathrm{d}W(t) * \] * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma exp(r (T-t)) \mathrm{d}W(t) \text{.} * \] * * @param forward The forward of the underlying \( F = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \). * @param optionMaturity The option maturity T. * @param optionStrike The option strike K. * @param payoffUnit The payoff unit (e.g., the discount factor) * @return Returns the value of the option delta (dV/dS(0)) of a European call option under the Bachelier model. */ public static double bachelierInhomogeneousOptionDelta( final double forward, final double volatility, final double optionMaturity, final double optionStrike, final double payoffUnit) { final double scaling = payoffUnit != 1 ? Math.sqrt((payoffUnit*payoffUnit-1)/(2.0*Math.log(payoffUnit))) : 1.0; final double volatilityEffective = volatility * scaling; return bachelierHomogeneousOptionDelta(forward, volatilityEffective, optionMaturity, optionStrike, payoffUnit); } /** * Calculates the option delta dV(0)/dS(0) of a call option, i.e., the payoff V(T)=max(S(T)-K,0), where S follows a * normal process with constant volatility, i.e., a inhomogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma \mathrm{d}W(t) * \] * Considering the numeraire \( N(t) = exp(-r (T-t)) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma exp(r (T-t)) \mathrm{d}W(t) \text{.} * \] * * This implies an effective "Bachelier" integrated variance, being (with \( s = 0 \) * \[ * 1/T \int_{0}^{T} \sigma^2 exp(2 r (T-t)) \mathrm{d}t \ = \ sigma^2 \frac{exp(2 r (T-0))-exp(2 r (T-T)}{2 r T} * \] * * @param forward The forward of the underlying \( F = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \). * @param optionMaturity The option maturity T. * @param optionStrike The option strike K. * @param payoffUnit The payoff unit (e.g., the discount factor) * @return Returns the value of the option delta (dV/dS(0)) of a European call option under the Bachelier model. */ public static RandomVariable bachelierInhomogeneousOptionDelta( final RandomVariable forward, final RandomVariable volatility, final double optionMaturity, final double optionStrike, final RandomVariable payoffUnit) { // TODO The formula fails if payoffUnit == 1 final RandomVariable volatilityEffective = volatility.mult(payoffUnit.squared().sub(1.0).div(payoffUnit.log().mult(2)).sqrt()); return bachelierHomogeneousOptionDelta(forward, volatilityEffective, optionMaturity, optionStrike, payoffUnit); } /** * Calculates the vega of a call, i.e., the payoff max(S(T)-K,0) P, where S follows a * normal process with constant volatility, i.e., a Inhomogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma \mathrm{d}W(t) * \] * Considering the numeraire \( N(t) = exp( r t ) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma exp(-r t) \mathrm{d}W(t) \text{.} * \] * * @param forward The forward of the underlying \( F = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \). * @param optionMaturity The option maturity T. * @param optionStrike The option strike. * @param payoffUnit The payoff unit (e.g., the discount factor) * @return Returns the vega of a European call option under the Bachelier model. */ public static double bachelierInhomogeneousOptionVega( final double forward, final double volatility, final double optionMaturity, final double optionStrike, final double payoffUnit) { final double scaling = payoffUnit != 1 ? Math.sqrt((payoffUnit*payoffUnit-1)/(2.0*Math.log(payoffUnit))) : 1.0; final double volatilityEffective = volatility * scaling; final double vegaHomogenouse = bachelierHomogeneousOptionVega(forward, volatilityEffective, optionMaturity, optionStrike, payoffUnit); return vegaHomogenouse * scaling; } /** * Calculates the vega of a call, i.e., the payoff max(S(T)-K,0) P, where S follows a * normal process with constant volatility, i.e., a Inhomogeneous Bachelier model * \[ * \mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma \mathrm{d}W(t) * \] * Considering the numeraire \( N(t) = exp( r t ) \), this implies that \( F(t) = S(t)/N(t) \) follows * \[ * \mathrm{d} F(t) = \sigma exp(-r t) \mathrm{d}W(t) \text{.} * \] * * @param forward The forward of the underlying \( F = S(0) \exp(r T) \). * @param volatility The Bachelier volatility \( \sigma \). * @param optionMaturity The option maturity T. * @param optionStrike The option strike. * @param payoffUnit The payoff unit (e.g., the discount factor) * @return Returns the vega of a European call option under the Bachelier model. */ public static RandomVariable bachelierInhomogeneousOptionVega( final RandomVariable forward, final RandomVariable volatility, final double optionMaturity, final double optionStrike, final RandomVariable payoffUnit) { // TODO The formula fails if payoffUnit == 1 final RandomVariable volatilityEffective = volatility.mult(payoffUnit.squared().sub(1.0).div(payoffUnit.log().mult(2)).sqrt()); final RandomVariable vegaHomogenouse = bachelierHomogeneousOptionVega(forward, volatilityEffective, optionMaturity, optionStrike, payoffUnit); return vegaHomogenouse.mult(volatilityEffective).div(volatility); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy