net.finmath.functions.BarrierOptions Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.functions;
/**
* This class implements the valuation of barrier options.
*
* Currently only supports a a lognormal model.
*
* We use the notation from the book by Espeen Gaarder Haugh.
* "The complete Guide to Option Pricing Formulas".
*
* @author Alessandro Gnoatto
* @version 1.0
* @date 09.03.2020
*/
public class BarrierOptions {
public enum BarrierType{
DOWN_IN,
UP_IN,
DOWN_OUT,
UP_OUT
}
/**
* Preventing instantiation of this class.
*/
private BarrierOptions() {}
/**
* Value a barrier option.
*
* @param initialStockValue The model's initial value of the stock.
* @param riskFreeRate The model's risk free rate of the stock.
* @param dividendYield The model's dividend yield of the stock.
* @param volatility The model's volatility yield of the stock.
* @param optionMaturity The product's option maturity.
* @param optionStrike The product's option strike.
* @param isCall If true, the a call option will be valued, otherwise a put option.
* @param rebate The product's rebate.
* @param barrierValue The location of the barrier.
* @param barrierType The type of the barrier.
*
* @return The value of the option.
*/
public static double blackScholesBarrierOptionValue(double initialStockValue,
double riskFreeRate,
double dividendYield,
double volatility,
double optionMaturity,
double optionStrike,
boolean isCall,
double rebate,
double barrierValue,
BarrierType barrierType) {
final int phi = isCall ? +1 : -1;
int eta = 0;
switch(barrierType) {
case UP_IN:
eta = -1;
break;
case DOWN_IN:
eta = 1;
break;
case UP_OUT:
eta = -1;
break;
case DOWN_OUT:
eta = 1;
break;
default:
throw new IllegalArgumentException("Invalid barrier type.");
}
final double volSq = volatility * volatility;
final double volTime = volatility * Math.sqrt(optionMaturity);
final double mu = (dividendYield - 0.5 * volSq)/(volSq);
final double lambda = Math.sqrt(mu * mu + (2*(riskFreeRate))/(volSq));
final double z = Math.log(barrierValue / initialStockValue) / volTime + lambda * volTime;
final double muVolTime = (1 + mu) * volTime;
final double x1 = Math.log(initialStockValue / optionStrike)/ volTime
+ muVolTime;
final double x2 = Math.log(initialStockValue / barrierValue)/ volTime
+ muVolTime;
final double y1 = Math.log(barrierValue * barrierValue / (initialStockValue * optionStrike))
/ volTime + muVolTime;
final double y2 = Math.log(barrierValue / initialStockValue) / volTime + muVolTime;
final double A = phi * initialStockValue * Math.exp((dividendYield-riskFreeRate) * optionMaturity)
* NormalDistribution.cumulativeDistribution(phi * x1)
- phi * optionStrike *Math.exp(-riskFreeRate * optionMaturity)
* NormalDistribution.cumulativeDistribution(phi* (x1 - volTime));
final double B = phi * initialStockValue * Math.exp((dividendYield-riskFreeRate) * optionMaturity)
* NormalDistribution.cumulativeDistribution(phi * x2)
- phi * optionStrike * Math.exp(-riskFreeRate *optionMaturity)
* NormalDistribution.cumulativeDistribution(phi * (x2 - volTime));
final double C = phi * initialStockValue * Math.exp((dividendYield-riskFreeRate) * optionMaturity)
* Math.pow(barrierValue / initialStockValue, 2 * (mu+1))
* NormalDistribution.cumulativeDistribution(eta * y1)
- phi * optionStrike * Math.exp(-riskFreeRate * optionMaturity)
* Math.pow(barrierValue / initialStockValue, 2 * mu)
* NormalDistribution.cumulativeDistribution(eta * (y1-volTime));
final double D = phi * initialStockValue * Math.exp((dividendYield-riskFreeRate) * optionMaturity)
* Math.pow(barrierValue / initialStockValue, 2 * (mu+1))
* NormalDistribution.cumulativeDistribution(eta * y2)
- phi * optionStrike * Math.exp(-riskFreeRate * optionMaturity)
* Math.pow(barrierValue / initialStockValue, 2 * mu)
* NormalDistribution.cumulativeDistribution(eta * (y2-volTime));
final double E = rebate * Math.exp(-riskFreeRate * optionMaturity)
* (NormalDistribution.cumulativeDistribution(eta * (x2-volTime))
- Math.pow(barrierValue / initialStockValue, 2*mu)
* NormalDistribution.cumulativeDistribution(eta * (y2-volTime)));
final double F = rebate *(Math.pow(barrierValue / initialStockValue, mu + lambda)
* NormalDistribution.cumulativeDistribution(eta * z)
+ Math.pow(barrierValue / initialStockValue, mu-lambda)
* NormalDistribution.cumulativeDistribution(eta * (z - 2 * lambda * volTime)));
double optionValue = 0.0;
switch(barrierType) {
/*
* In options are paid for today but first come into existence
* if the asset price S hits the barrier H before expiration.
* It is possible to include a pres-pecified cash rebate K,
* which is paid out at option expiration if the option
* has not been knocked in during its lifetime.
*/
case DOWN_IN: //Down in call e put ok
if(isCall) {
//down and in call
//Payoff: max(S — X; 0) if S < H before T else K at expiration.
if(optionStrike >= barrierValue) {
//(eta=1, phi=1)
optionValue = C + E;
}else {
//(eta=1, phi=1)
optionValue = A - B + D + E;
}
}else {
//down and in put
//Payoff: max(X - S;0) if S < H before T else K at expiration.
if(optionStrike >= barrierValue) {
//(eta=1, phi=-1)
optionValue = B - C + D + E;
}else {
//(eta=1, phi=-1)
optionValue = A + E;
}
}
break;
case UP_IN:
if(isCall) {
//up and in call
//Payoff: max (S —X; 0) if S > H before T else K at expiration.
if(optionStrike >= barrierValue) {
//(eta=-1, phi=1)
optionValue = A + E;
}else {
//(eta=-1, phi=1)
optionValue = B - C + D + E;
}
}else {
//up and in put
//Payoff: max(X — S; 0) if S > H before T else K at expiration.
if(optionStrike >= barrierValue) {
//(eta=-1, phi=-1)
optionValue = A - B + D + E;
}else {
//(eta=-1, phi=-1)
optionValue = C + E;
}
}
break;
/*
* Out options are similar to standard options except that
* the option becomes worthless if the asset price S hits
* the barrier before expiration.
* It is possible to include a prespecified cash rebate K,
* which is paid out if the option is knocked out before expiration.
*/
case DOWN_OUT:
if(isCall) {
//down and out call
//Payoff: max(S — X; 0) if S > H before T else K at hit.
if(optionStrike >= barrierValue) {
//(eta=1, phi=1)
optionValue = A - C + F;
}else {
//(eta=1, phi=1)
optionValue = B - D + F;
}
}else {
//down and out put
//Payoff: max(X — S; 0) if S > H before T else K at hit.
if(optionStrike >= barrierValue) {
//(eta=1, phi=-1)
optionValue = A - B + C - D + F;
}else {
//(eta=1, phi=-1)
optionValue = F;
}
}
break;
case UP_OUT:
if(isCall) {
//up and out call
//Payoff: max(S — X; 0) if S < H before T else K at hit.
if(optionStrike >= barrierValue) {
//(eta=-1, phi=1)
optionValue = F;
}else {
//(eta=-1, phi=1)
optionValue = A - B + C - D + F;
}
}else {
//up and out put
//Payoff: max(X — S; 0) if S < H before T else K at hit.
if(optionStrike >= barrierValue) {
//(eta=-1, phi=-1)
optionValue = B - D + F;
}else {
//(eta=-1, phi=-1)
optionValue = A - C + F;
}
}
break;
default:
throw new IllegalArgumentException("Invalid barrier type.");
}
return optionValue;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy