net.finmath.functions.LinearAlgebra Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 23.02.2004
*/
package net.finmath.functions;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.linear.CholeskyDecomposition;
import org.apache.commons.math3.linear.DecompositionSolver;
import org.apache.commons.math3.linear.EigenDecomposition;
import org.apache.commons.math3.linear.LUDecomposition;
import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.QRDecomposition;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.SingularValueDecomposition;
/**
* This class implements some methods from linear algebra (e.g. solution of a linear equation, PCA).
*
* It is basically a functional wrapper using either the Apache commons math or JBlas
*
* @author Christian Fries
* @version 1.6
*/
public class LinearAlgebra {
private static boolean isEigenvalueDecompositionViaSVD = Boolean.parseBoolean(System.getProperty("net.finmath.functions.LinearAlgebra.isEigenvalueDecompositionViaSVD","false"));
private static boolean isSolverUseApacheCommonsMath;
private static boolean isJBlasAvailable;
static {
// Default value is true, in which case we will NOT use jblas
boolean isSolverUseApacheCommonsMath = Boolean.parseBoolean(System.getProperty("net.finmath.functions.LinearAlgebra.isUseApacheCommonsMath","true"));
/*
* Check if jblas is available
*/
if(!isSolverUseApacheCommonsMath) {
try {
final double[] x = org.jblas.Solve.solve(new org.jblas.DoubleMatrix(2, 2, 1.0, 1.0, 0.0, 1.0), new org.jblas.DoubleMatrix(2, 1, 1.0, 1.0)).data;
// The following should not happen.
if(x[0] != 1.0 || x[1] != 0.0) {
isJBlasAvailable = false;
}
else {
isJBlasAvailable = true;
}
}
catch(final java.lang.UnsatisfiedLinkError e) {
isJBlasAvailable = false;
}
}
if(!isJBlasAvailable) {
isSolverUseApacheCommonsMath = true;
}
LinearAlgebra.isSolverUseApacheCommonsMath = isSolverUseApacheCommonsMath;
}
/**
* Create a Cholesky decomposition of a symmetric matrix.
*
* @param symmetricMatrix The input matrix.
* @return A lower triangle matrix representing the CholeskyDecomposition.
*/
public static double[][] getCholeskyDecomposition(double[][] symmetricMatrix) {
CholeskyDecomposition decomposition = new CholeskyDecomposition(new Array2DRowRealMatrix(symmetricMatrix));
double[][] choleskyDecomposition = decomposition.getL().getData();
return choleskyDecomposition;
}
/**
* Find a solution of the linear equation A x = b where
*
* - A is an m x n - matrix given as double[m][n]
* - b is an m - vector given as double[m],
* - x is an n - vector given as double[n],
*
* using a standard Tikhonov regularization, i.e., we solve in the least square sense
* A* x = b*
* where A* = (A^T, lambda I)^T and b* = (b^T , 0)^T.
*
* @param matrixA The matrix A (left hand side of the linear equation).
* @param b The vector (right hand of the linear equation).
* @param lambda The parameter lambda of the Tikhonov regularization. Lambda effectively measures which small numbers are considered zero.
* @return A solution x to A x = b.
*/
public static double[] solveLinearEquationTikonov(final double[][] matrixA, final double[] b, final double lambda) {
if(lambda == 0) {
return solveLinearEquationLeastSquare(matrixA, b);
}
/*
* The copy of the array is inefficient, but the use cases for this method are currently limited.
* And SVD is an alternative to this method.
*/
final int rows = matrixA.length;
final int cols = matrixA[0].length;
final double[][] matrixRegularized = new double[rows+cols][cols];
final double[] bRegularized = new double[rows+cols]; // Note the JVM initializes arrays to zero.
for(int i=0; i
* A is an m x n - matrix given as double[m][n]
* b is an m - vector given as double[m],
* x is an n - vector given as double[n],
*
* using a Tikhonov regularization, i.e., we solve in the least square sense
* A* x = b*
* where A* = (A^T, lambda0 I, lambda1 S, lambda2 C)^T and b* = (b^T , 0 , 0 , 0)^T.
*
* The matrix I is the identity matrix, effectively reducing the level of the solution vector.
* The matrix S is the first order central finite difference matrix with -lambda1 on the element [i][i-1] and +lambda1 on the element [i][i+1]
* The matrix C is the second order central finite difference matrix with -0.5 lambda2 on the element [i][i-1] and [i][i+1] and lambda2 on the element [i][i].
*
* @param matrixA The matrix A (left hand side of the linear equation).
* @param b The vector (right hand of the linear equation).
* @param lambda0 The parameter lambda0 of the Tikhonov regularization. Reduces the norm of the solution vector.
* @param lambda1 The parameter lambda1 of the Tikhonov regularization. Reduces the slope of the solution vector.
* @param lambda2 The parameter lambda1 of the Tikhonov regularization. Reduces the curvature of the solution vector.
* @return The solution x of the equation A* x = b*
*/
public static double[] solveLinearEquationTikonov(final double[][] matrixA, final double[] b, final double lambda0, final double lambda1, final double lambda2) {
if(lambda0 == 0 && lambda1 ==0 && lambda2 == 0) {
return solveLinearEquationLeastSquare(matrixA, b);
}
/*
* The copy of the array is inefficient, but the use cases for this method are currently limited.
* And SVD is an alternative to this method.
*/
final int rows = matrixA.length;
final int cols = matrixA[0].length;
final double[][] matrixRegularized = new double[rows+3*cols][cols];
final double[] bRegularized = new double[rows+3*cols]; // Note the JVM initializes arrays to zero.
for(int i=0; i0) {
matrixRow[j-1] = lambda1;
}
if(j0) {
matrixRow[j-1] = -0.5 * lambda2;
}
if(j
* A is an m x n - matrix given as double[m][n]
* b is an m - vector given as double[m],
* x is an n - vector given as double[n],
*
*
* @param matrixA The matrix A (left hand side of the linear equation).
* @param b The vector (right hand of the linear equation).
* @return A solution x to A x = b.
*/
public static double[] solveLinearEquation(final double[][] matrixA, final double[] b) {
if(isSolverUseApacheCommonsMath) {
final Array2DRowRealMatrix matrix = new Array2DRowRealMatrix(matrixA);
DecompositionSolver solver;
if(matrix.getColumnDimension() == matrix.getRowDimension()) {
solver = new LUDecomposition(matrix).getSolver();
}
else {
solver = new QRDecomposition(new Array2DRowRealMatrix(matrixA)).getSolver();
}
// Using SVD - very slow
// solver = new SingularValueDecomposition(new Array2DRowRealMatrix(A)).getSolver();
return solver.solve(new Array2DRowRealMatrix(b)).getColumn(0);
}
else {
return org.jblas.Solve.solve(new org.jblas.DoubleMatrix(matrixA), new org.jblas.DoubleMatrix(b)).data;
// For use of colt:
// cern.colt.matrix.linalg.Algebra linearAlgebra = new cern.colt.matrix.linalg.Algebra();
// return linearAlgebra.solve(new DenseDoubleMatrix2D(A), linearAlgebra.transpose(new DenseDoubleMatrix2D(new double[][] { b }))).viewColumn(0).toArray();
// For use of parallel colt:
// return new cern.colt.matrix.tdouble.algo.decomposition.DenseDoubleLUDecomposition(new cern.colt.matrix.tdouble.impl.DenseDoubleMatrix2D(A)).solve(new cern.colt.matrix.tdouble.impl.DenseDoubleMatrix1D(b)).toArray();
}
}
/**
* Find a solution of the linear equation A x = b where
*
* - A is an m x n - matrix given as double[m][n]
* - b is an m - vector given as double[m],
* - x is an n - vector given as double[n],
*
*
* @param matrixA The matrix A (left hand side of the linear equation).
* @param b The vector (right hand of the linear equation).
* @return A solution x to A x = b.
*/
public static double[] solveLinearEquationSVD(final double[][] matrixA, final double[] b) {
if(isSolverUseApacheCommonsMath) {
final Array2DRowRealMatrix matrix = new Array2DRowRealMatrix(matrixA);
// Using SVD - very slow
final DecompositionSolver solver = new SingularValueDecomposition(matrix).getSolver();
return solver.solve(new Array2DRowRealMatrix(b)).getColumn(0);
}
else {
return org.jblas.Solve.solve(new org.jblas.DoubleMatrix(matrixA), new org.jblas.DoubleMatrix(b)).data;
// For use of colt:
// cern.colt.matrix.linalg.Algebra linearAlgebra = new cern.colt.matrix.linalg.Algebra();
// return linearAlgebra.solve(new DenseDoubleMatrix2D(A), linearAlgebra.transpose(new DenseDoubleMatrix2D(new double[][] { b }))).viewColumn(0).toArray();
// For use of parallel colt:
// return new cern.colt.matrix.tdouble.algo.decomposition.DenseDoubleLUDecomposition(new cern.colt.matrix.tdouble.impl.DenseDoubleMatrix2D(A)).solve(new cern.colt.matrix.tdouble.impl.DenseDoubleMatrix1D(b)).toArray();
}
}
/**
* Returns the inverse of a given matrix.
*
* @param matrix A matrix given as double[n][n].
* @return The inverse of the given matrix.
*/
public static double[][] invert(final double[][] matrix) {
if(isSolverUseApacheCommonsMath) {
// Use LU from common math
final LUDecomposition lu = new LUDecomposition(new Array2DRowRealMatrix(matrix));
final double[][] matrixInverse = lu.getSolver().getInverse().getData();
return matrixInverse;
}
else {
return org.jblas.Solve.pinv(new org.jblas.DoubleMatrix(matrix)).toArray2();
}
}
/**
* Find a solution of the linear equation A x = b where
*
* - A is an symmetric n x n - matrix given as double[n][n]
* - b is an n - vector given as double[n],
* - x is an n - vector given as double[n],
*
*
* @param matrix The matrix A (left hand side of the linear equation).
* @param vector The vector b (right hand of the linear equation).
* @return A solution x to A x = b.
*/
public static double[] solveLinearEquationSymmetric(final double[][] matrix, final double[] vector) {
if(isSolverUseApacheCommonsMath) {
final DecompositionSolver solver = new LUDecomposition(new Array2DRowRealMatrix(matrix)).getSolver();
return solver.solve(new Array2DRowRealMatrix(vector)).getColumn(0);
}
else {
return org.jblas.Solve.solveSymmetric(new org.jblas.DoubleMatrix(matrix), new org.jblas.DoubleMatrix(vector)).data;
/* To use the linear algebra package colt from cern.
cern.colt.matrix.linalg.Algebra linearAlgebra = new cern.colt.matrix.linalg.Algebra();
double[] x = linearAlgebra.solve(new DenseDoubleMatrix2D(A), linearAlgebra.transpose(new DenseDoubleMatrix2D(new double[][] { b }))).viewColumn(0).toArray();
return x;
*/
}
}
/**
* Find a solution of the linear equation A x = b in the least square sense where
*
* - A is an m x n - matrix given as double[m][n]
* - b is an m - vector given as double[m],
* - x is an n - vector given as double[n],
*
*
* @param matrix The matrix A (left hand side of the linear equation).
* @param vector The vector b (right hand of the linear equation).
* @return A solution x to A x = b.
*/
public static double[] solveLinearEquationLeastSquare(final double[][] matrix, final double[] vector) {
// We use the linear algebra package apache commons math
final DecompositionSolver solver = new SingularValueDecomposition(new Array2DRowRealMatrix(matrix, false)).getSolver();
return solver.solve(new ArrayRealVector(vector)).toArray();
}
/**
* Find a solution of the linear equation A X = B in the least square sense where
*
* - A is an m x n - matrix given as double[m][n]
* - B is an m x k - matrix given as double[m][k],
* - X is an n x k - matrix given as double[n][k],
*
*
* @param matrix The matrix A (left hand side of the linear equation).
* @param rhs The matrix B (right hand of the linear equation).
* @return A solution X to A X = B.
*/
public static double[][] solveLinearEquationLeastSquare(final double[][] matrix, final double[][] rhs) {
// We use the linear algebra package apache commons math
final DecompositionSolver solver = new SingularValueDecomposition(new Array2DRowRealMatrix(matrix, false)).getSolver();
return solver.solve(new Array2DRowRealMatrix(rhs)).getData();
}
/**
* Returns the matrix of the n Eigenvectors corresponding to the first n largest Eigenvalues of a correlation matrix.
* These Eigenvectors can also be interpreted as "principal components" (i.e., the method implements the PCA).
*
* @param correlationMatrix The given correlation matrix.
* @param numberOfFactors The requested number of factors (eigenvectors).
* @return Matrix of n Eigenvectors (columns) (matrix is given as double[n][numberOfFactors], where n is the number of rows of the correlationMatrix.
*/
public static double[][] getFactorMatrix(final double[][] correlationMatrix, final int numberOfFactors) {
return getFactorMatrixUsingCommonsMath(correlationMatrix, numberOfFactors);
}
/**
* Returns a correlation matrix which has rank < n and for which the first n factors agree with the factors of correlationMatrix.
*
* @param correlationMatrix The given correlation matrix.
* @param numberOfFactors The requested number of factors (Eigenvectors).
* @return Factor reduced correlation matrix.
*/
public static double[][] factorReduction(final double[][] correlationMatrix, final int numberOfFactors) {
return factorReductionUsingCommonsMath(correlationMatrix, numberOfFactors);
}
/**
* Returns the matrix of the n Eigenvectors corresponding to the first n largest Eigenvalues of a correlation matrix.
* These eigenvectors can also be interpreted as "principal components" (i.e., the method implements the PCA).
*
* @param correlationMatrix The given correlation matrix.
* @param numberOfFactors The requested number of factors (Eigenvectors).
* @return Matrix of n Eigenvectors (columns) (matrix is given as double[n][numberOfFactors], where n is the number of rows of the correlationMatrix.
*/
private static double[][] getFactorMatrixUsingCommonsMath(final double[][] correlationMatrix, final int numberOfFactors) {
/*
* Factor reduction
*/
// Create an eigen vector decomposition of the correlation matrix
double[] eigenValues;
double[][] eigenVectorMatrix;
if(isEigenvalueDecompositionViaSVD) {
final SingularValueDecomposition svd = new SingularValueDecomposition(new Array2DRowRealMatrix(correlationMatrix));
eigenValues = svd.getSingularValues();
eigenVectorMatrix = svd.getV().getData();
}
else {
final EigenDecomposition eigenDecomp = new EigenDecomposition(new Array2DRowRealMatrix(correlationMatrix, false));
eigenValues = eigenDecomp.getRealEigenvalues();
eigenVectorMatrix = eigenDecomp.getV().getData();
}
class EigenValueIndex implements Comparable {
private final int index;
private final Double value;
EigenValueIndex(final int index, final double value) {
this.index = index; this.value = value;
}
@Override
public int compareTo(final EigenValueIndex o) { return o.value.compareTo(value); }
}
final List eigenValueIndices = new ArrayList<>();
for(int i=0; i 0.0 ? 1.0 : -1.0; // Convention: Have first entry of eigenvector positive. This is to make results more consistent.
double eigenVectorNormSquared = 0.0;
for (int row = 0; row < eigenValues.length; row++) {
eigenVectorNormSquared += eigenVectorMatrix[row][eigenVectorIndex] * eigenVectorMatrix[row][eigenVectorIndex];
}
eigenValue = Math.max(eigenValue,0.0);
for (int row = 0; row < eigenValues.length; row++) {
factorMatrix[row][factor] = signChange * Math.sqrt(eigenValue/eigenVectorNormSquared) * eigenVectorMatrix[row][eigenVectorIndex];
}
}
return factorMatrix;
}
/**
* Returns a correlation matrix which has rank < n and for which the first n factors agree with the factors of correlationMatrix.
*
* @param correlationMatrix The given correlation matrix.
* @param numberOfFactors The requested number of factors (Eigenvectors).
* @return Factor reduced correlation matrix.
*/
public static double[][] factorReductionUsingCommonsMath(final double[][] correlationMatrix, final int numberOfFactors) {
// Extract factors corresponding to the largest eigenvalues
final double[][] factorMatrix = getFactorMatrix(correlationMatrix, numberOfFactors);
// Renormalize rows
for (int row = 0; row < correlationMatrix.length; row++) {
double sumSquared = 0;
for (int factor = 0; factor < numberOfFactors; factor++) {
sumSquared += factorMatrix[row][factor] * factorMatrix[row][factor];
}
if(sumSquared != 0) {
for (int factor = 0; factor < numberOfFactors; factor++) {
factorMatrix[row][factor] = factorMatrix[row][factor] / Math.sqrt(sumSquared);
}
}
else {
// This is a rare case: The factor reduction of a completely decorrelated system to 1 factor
for (int factor = 0; factor < numberOfFactors; factor++) {
factorMatrix[row][factor] = 1.0;
}
}
}
// Orthogonalized again
final double[][] reducedCorrelationMatrix = (new Array2DRowRealMatrix(factorMatrix).multiply(new Array2DRowRealMatrix(factorMatrix).transpose())).getData();
return getFactorMatrix(reducedCorrelationMatrix, numberOfFactors);
}
/**
* Calculate the "matrix exponential" (expm).
*
* Note: The function currently requires jblas. If jblas is not availabe on your system, an exception will be thrown.
* A future version of this function may implement a fall back.
*
* @param matrix The given matrix.
* @return The exp(matrix).
*/
public static double[][] exp(final double[][] matrix) {
return org.jblas.MatrixFunctions.expm(new org.jblas.DoubleMatrix(matrix)).toArray2();
}
/**
* Calculate the power of a matrix
*
* Note: The function currently requires jblas. If jblas is not availabe on your system, an exception will be thrown.
* A future version of this function may implement a fall back.
*
* @param matrix The given matrix.
* @param exponent The exponent
* @return The pow(matrix, exponent).
*/
public static double[][] pow(final double[][] matrix, double exponent) {
return org.jblas.MatrixFunctions.expm(org.jblas.MatrixFunctions.log(new org.jblas.DoubleMatrix(matrix).mul(exponent))).toArray2();
}
/**
* Calculate the "matrix exponential" (expm).
*
* Note: The function currently requires jblas. If jblas is not availabe on your system, an exception will be thrown.
* A future version of this function may implement a fall back.
*
* @param matrix The given matrix.
* @return The exp(matrix).
*/
public static RealMatrix exp(final RealMatrix matrix) {
return new Array2DRowRealMatrix(exp(matrix.getData()));
}
/**
* Transpose a matrix
*
* @param matrix The given matrix.
* @return The transposed matrix.
*/
public static double[][] transpose(final double[][] matrix){
//Get number of rows and columns of matrix
final int numberOfRows = matrix.length;
final int numberOfCols = matrix[0].length;
//Instantiate a unitMatrix of dimension dim
final double[][] transpose = new double[numberOfCols][numberOfRows];
//Create unit matrix
for(int rowIndex = 0; rowIndex < numberOfRows; rowIndex++) {
for(int colIndex = 0; colIndex < numberOfCols; colIndex++) {
transpose[colIndex][rowIndex] = matrix[rowIndex][colIndex];
}
}
return transpose;
}
/**
* Pseudo-Inverse of a matrix calculated in the least square sense.
*
* @param matrix The given matrix A.
* @return pseudoInverse The pseudo-inverse matrix P, such that A*P*A = A and P*A*P = P
*/
public static double[][] pseudoInverse(final double[][] matrix){
if(isSolverUseApacheCommonsMath) {
// Use LU from common math
final SingularValueDecomposition svd = new SingularValueDecomposition(new Array2DRowRealMatrix(matrix));
final double[][] matrixInverse = svd.getSolver().getInverse().getData();
return matrixInverse;
}
else {
return org.jblas.Solve.pinv(new org.jblas.DoubleMatrix(matrix)).toArray2();
}
}
/**
* Generates a diagonal matrix with the input vector on its diagonal
*
* @param vector The given matrix A.
* @return diagonalMatrix The matrix with the vectors entries on its diagonal
*/
public static double[][] diag(final double[] vector){
// Note: According to the Java Language spec, an array is initialized with the default value, here 0.
final double[][] diagonalMatrix = new double[vector.length][vector.length];
for(int index = 0; index < vector.length; index++) {
diagonalMatrix[index][index] = vector[index];
}
return diagonalMatrix;
}
/**
* Multiplication of two matrices.
*
* @param left The matrix A.
* @param right The matrix B
* @return product The matrix product of A*B (if suitable)
*/
public static double[][] multMatrices(final double[][] left, final double[][] right){
return new Array2DRowRealMatrix(left).multiply(new Array2DRowRealMatrix(right)).getData();
}
/**
* Multiplication of matrix and vector. The vector array is interpreted as column vector.
*
* @param matrix The matrix A.
* @param vector The vector v
* @return product The matrix product of A*v (if suitable)
*/
public static double[] multMatrixVector(final double[][] matrix, final double[] vector){
return new Array2DRowRealMatrix(matrix).multiply(new Array2DRowRealMatrix(vector)).getColumn(0);
}
/**
* Matrix power. Tries to calculate a matrix A such that M^{exponent} = A.
*
* @param matrix The matrix M of which we like to have the power.
* @param exponent The exponent.
* @return The exponent-th power of M
*/
public static double[][] matrixPow(double[][] matrix, double exponent) {
return matrixExp(matrixLog(new Array2DRowRealMatrix(matrix)).scalarMultiply(exponent)).getData();
}
/**
* Matrix exponential. Tries to calculate the matrix A such that exp(M) = A.
*
* @param matrix The matrix M
* @return exp(M)
*/
public static double[][] matrixExp(double[][] matrix) {
return matrixExp(new Array2DRowRealMatrix(matrix)).getData();
}
/**
* Matrix logarithm. Tries to calculate the matrix A such that log(M) = A.
*
* @param matrix The matrix M
* @return log(M)
*/
public static double[][] matrixLog(double[][] matrix) {
return matrixLog(new Array2DRowRealMatrix(matrix)).getData();
}
/*
* There are better ways doing this - but this here is sufficient for some less crital purposes.
*/
private static RealMatrix matrixExp(RealMatrix matrix) {
if(MatrixUtils.isSymmetric(matrix, 1E-10)) {
// Symmetric matrix: try to use eigenvalue decomposition.
EigenDecomposition eigenDecomposition = new EigenDecomposition(matrix);
RealMatrix diag = eigenDecomposition.getD();
for(int i=0; i
© 2015 - 2025 Weber Informatics LLC | Privacy Policy