net.finmath.integration.MonteCarloIntegrator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.integration;
import java.util.function.DoubleUnaryOperator;
import java.util.stream.DoubleStream;
import org.apache.commons.lang3.Validate;
import net.finmath.randomnumbers.MersenneTwister;
import net.finmath.randomnumbers.RandomNumberGenerator1D;
/**
* A simple integrator using Monte-Carlo integration.
*
* The constructor has an optional argument to allow
* parallel function evaluation. In that case, the integration rule
* uses Java 8 parallel streams to evaluate.
*
* @author Christian Fries
* @version 1.0
*/
public class MonteCarloIntegrator extends AbstractRealIntegral{
private final int numberOfEvaluationPoints;
private final int seed;
/**
* Create an integrator using Monte-Carlo integration.
*
* @param lowerBound Lower bound of the integral.
* @param upperBound Upper bound of the integral.
* @param numberOfEvaluationPoints Maximum number of evaluation points to be used, must be greater or equal to 3.
* @param seed The seed of the random number generator.
* @param useParallelEvaluation If true, the integration rule will perform parallel evaluation of the integrand.
*/
public MonteCarloIntegrator(final double lowerBound, final double upperBound, final int numberOfEvaluationPoints, final int seed, final boolean useParallelEvaluation) {
super(lowerBound, upperBound);
Validate.exclusiveBetween(0, Integer.MAX_VALUE, numberOfEvaluationPoints, "Parameter numberOfEvaluationPoints required to be > 0.");
this.numberOfEvaluationPoints = numberOfEvaluationPoints;
this.seed = seed;
}
/**
* Create an integrator using Monte-Carlo.
*
* @param lowerBound Lower bound of the integral.
* @param upperBound Upper bound of the integral.
* @param numberOfEvaluationPoints Maximum number of evaluation points to be used, must be greater or equal to 3.
* @param useParallelEvaluation If true, the integration rule will perform parallel evaluation of the integrand.
*/
public MonteCarloIntegrator(final double lowerBound, final double upperBound, final int numberOfEvaluationPoints, final boolean useParallelEvaluation) {
this(lowerBound, upperBound, numberOfEvaluationPoints, 3141 /* fixed seed */, useParallelEvaluation);
}
/**
* Create an integrator using Monte-Carlo.
*
* @param lowerBound Lower bound of the integral.
* @param upperBound Upper bound of the integral.
* @param numberOfEvaluationPoints Maximum number of evaluation points to be used.
*/
public MonteCarloIntegrator(final double lowerBound, final double upperBound, final int numberOfEvaluationPoints) {
this(lowerBound, upperBound, numberOfEvaluationPoints, false);
}
@Override
public double integrate(final DoubleUnaryOperator integrand) {
final double lowerBound = getLowerBound();
final double upperBound = getUpperBound();
final double range = upperBound-lowerBound;
// Create random number sequence generator (we use MersenneTwister)
final RandomNumberGenerator1D mersenneTwister = new MersenneTwister(seed);
final DoubleStream randomNumberSequence = DoubleStream.generate(mersenneTwister).limit(numberOfEvaluationPoints);
// Integrate f(a x + b) on [0,1)
return randomNumberSequence.map(x -> lowerBound + x * range).map(integrand).sum() * range / numberOfEvaluationPoints;
}
public int getNumberOfEvaluationPoints() {
return numberOfEvaluationPoints;
}
public int getSeed() {
return seed;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy