net.finmath.montecarlo.JumpProcessIncrements Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 09.02.2004
*/
package net.finmath.montecarlo;
import java.io.IOException;
import java.io.Serializable;
import java.util.Arrays;
import net.finmath.functions.PoissonDistribution;
import net.finmath.randomnumbers.MersenneTwister;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;
/**
* Implementation of a time-discrete n-dimensional jump process
* J = (J1,...,Jn) where Ji is
* a Poisson jump process and Ji, Jj are
* independent for i not equal j.
*
* Here the dimension n is called factors since the increments are used to
* generate multi-dimensional multi-factor processes and there one might
* use a different number of factors to generate processes of different
* dimension.
*
* The quadruppel (time discretization, jumpIntensities, number of paths, seed)
* defines the state of an object of this class.
*
* The class is immutable and thread safe. It uses lazy initialization.
*
* @author Christian Fries
* @version 1.6
*/
public class JumpProcessIncrements implements IndependentIncrements, Serializable {
private static final long serialVersionUID = -5430067621669213475L;
private final TimeDiscretization timeDiscretization;
private final int numberOfPaths;
private final int seed;
private final double[] jumpIntensities;
private final RandomVariableFactory randomVariableFactory;
private transient RandomVariable[][] increments;
private transient Object incrementsLazyInitLock = new Object();
/**
* Construct a jump process.
*
* The constructor allows to set the factory to be used for the construction of
* random variables. This allows to generate increments represented
* by different implementations of the RandomVariable (e.g. the RandomVariableFromFloatArray internally
* using float representations).
*
* @param timeDiscretization The time discretization used for the increments.
* @param jumpIntensities The jump intensities, one for each factor.
* @param numberOfPaths Number of paths to simulate.
* @param seed The seed of the random number generator.
* @param randomVariableFactory Factory to be used to create random variable.
*/
public JumpProcessIncrements(
final TimeDiscretization timeDiscretization,
final double[] jumpIntensities,
final int numberOfPaths,
final int seed,
final RandomVariableFactory randomVariableFactory) {
super();
this.timeDiscretization = timeDiscretization;
this.jumpIntensities = jumpIntensities;
this.numberOfPaths = numberOfPaths;
this.seed = seed;
this.randomVariableFactory = randomVariableFactory;
increments = null; // Lazy initialization
}
/**
* Construct a jump process.
*
* @param timeDiscretization The time discretization used for the Brownian increments.
* @param jumpIntensities The vector of jump intensities, one intensity for each factor.
* @param numberOfPaths Number of paths to simulate.
* @param seed The seed of the random number generator.
*/
public JumpProcessIncrements(
final TimeDiscretization timeDiscretization,
final double[] jumpIntensities,
final int numberOfPaths,
final int seed) {
this(timeDiscretization, jumpIntensities, numberOfPaths, seed, new RandomVariableFromArrayFactory());
}
@Override
public JumpProcessIncrements getCloneWithModifiedSeed(final int seed) {
return new JumpProcessIncrements(getTimeDiscretization(), jumpIntensities, getNumberOfPaths(), seed);
}
@Override
public JumpProcessIncrements getCloneWithModifiedTimeDiscretization(final TimeDiscretization newTimeDiscretization) {
/// @TODO This can be improved: a complete recreation of the Brownian motion wouldn't be necessary!
return new JumpProcessIncrements(newTimeDiscretization, jumpIntensities, getNumberOfPaths(), getSeed());
}
@Override
public RandomVariable getIncrement(final int timeIndex, final int factor) {
// Thread safe lazy initialization
synchronized(incrementsLazyInitLock) {
if(increments == null) {
doGenerateIncrements();
}
}
/*
* We return an immutable object which ensures that the receiver does not alter the data.
*/
return increments[timeIndex][factor];
}
/**
* Lazy initialization of brownianIncrement. Synchronized to ensure thread safety of lazy init.
*/
private void doGenerateIncrements() {
if(increments != null) {
return; // Nothing to do
}
// Create random number sequence generator
final MersenneTwister mersenneTwister = new MersenneTwister(seed);
// Allocate memory
final double[][][] incrementsArray = new double[timeDiscretization.getNumberOfTimeSteps()][jumpIntensities.length][numberOfPaths];
// Pre-calculate Poisson distributions
final PoissonDistribution[][] poissonDistribution = new PoissonDistribution[timeDiscretization.getNumberOfTimeSteps()][jumpIntensities.length];
for(int timeIndex=0; timeIndex
© 2015 - 2025 Weber Informatics LLC | Privacy Policy