net.finmath.montecarlo.assetderivativevaluation.MonteCarloVarianceGammaModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.montecarlo.assetderivativevaluation;
import java.time.LocalDateTime;
import java.util.HashMap;
import java.util.Map;
import net.finmath.exception.CalculationException;
import net.finmath.montecarlo.VarianceGammaProcess;
import net.finmath.montecarlo.assetderivativevaluation.models.VarianceGammaModel;
import net.finmath.montecarlo.process.EulerSchemeFromProcessModel;
import net.finmath.montecarlo.process.MonteCarloProcess;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;
/**
* This class glues together a {@link VarianceGammaModel} and a Monte-Carlo implementation of a MonteCarloProcessFromProcessModel
* and forms a Monte-Carlo implementation of the Variance Gamma Model by implementing AssetModelMonteCarloSimulationModel
.
*
* @author Alessandro Gnoatto
* @version 1.0
*/
public class MonteCarloVarianceGammaModel implements AssetModelMonteCarloSimulationModel {
private final VarianceGammaModel model;
private final MonteCarloProcess process;
private final double initialValue;
private final int seed;
/**
* Create a Monte Carlo simulation using a given time discretization.
*
* @param timeDiscretization The time discretization.
* @param numberOfPaths The number of Monte-Carlo paths to be used.
* @param seed The seed used for the random number generator.
* @param initialValue \( S_0 \) The spot value.
* @param riskFreeRate The risk free rate.
* @param sigma The parameter \( \sigma \)
* @param theta The parameter \( \theta \)
* @param nu The parameter \( \nu \)
*/
public MonteCarloVarianceGammaModel(
final TimeDiscretization timeDiscretization,
final int numberOfPaths,
final int seed,
final double initialValue,
final double riskFreeRate,
final double sigma,
final double theta,
final double nu) {
super();
this.initialValue = initialValue;
this.seed = seed;
// Create the model
model = new VarianceGammaModel(initialValue,riskFreeRate,sigma,theta,nu);
// Create a corresponding MC process
process = new EulerSchemeFromProcessModel(model, new VarianceGammaProcess(sigma, nu, theta,
timeDiscretization, 1, numberOfPaths,seed));
}
@Override
public LocalDateTime getReferenceDate() {
throw new UnsupportedOperationException("This model does not provide a reference date. Reference dates will be mandatory in a future version.");
}
@Override
public RandomVariable getAssetValue(final double time, final int assetIndex) throws CalculationException {
return getAssetValue(getTimeIndex(time), assetIndex);
}
@Override
public RandomVariable getAssetValue(final int timeIndex, final int assetIndex) throws CalculationException {
return process.getProcessValue(timeIndex, assetIndex);
}
@Override
public RandomVariable getNumeraire(final int timeIndex) throws CalculationException {
final double time = getTime(timeIndex);
return model.getNumeraire(process, time);
}
@Override
public RandomVariable getNumeraire(final double time) throws CalculationException {
return model.getNumeraire(process, time);
}
@Override
public RandomVariable getMonteCarloWeights(final double time) throws CalculationException {
return getMonteCarloWeights(getTimeIndex(time));
}
@Override
public int getNumberOfAssets() {
return 1;
}
@Override
public AssetModelMonteCarloSimulationModel getCloneWithModifiedData(final Map dataModified) {
/*
* Determine the new model parameters from the provided parameter map.
*/
final double newInitialTime = dataModified.get("initialTime") != null ? ((Number)dataModified.get("initialTime")).doubleValue() : getTime(0);
final double newInitialValue = dataModified.get("initialValue") != null ? ((Number)dataModified.get("initialValue")).doubleValue() : initialValue;
final double newRiskFreeRate = dataModified.get("riskFreeRate") != null ? ((Number)dataModified.get("riskFreeRate")).doubleValue() : model.getRiskFreeRate().doubleValue();
final double newSigma = dataModified.get("sigma") != null ? ((Number)dataModified.get("sigma")).doubleValue() : model.getSigma().doubleValue();
final double newTheta = dataModified.get("theta") != null ? ((Number)dataModified.get("theta")).doubleValue() : model.getTheta().doubleValue();
final double newNu = dataModified.get("nu") != null ? ((Number)dataModified.get("nu")).doubleValue() : model.getNu().doubleValue();
final int newSeed = dataModified.get("seed") != null ? ((Number)dataModified.get("seed")).intValue() : seed;
return new MonteCarloVarianceGammaModel(process.getTimeDiscretization().getTimeShiftedTimeDiscretization(newInitialTime-getTime(0)), process.getNumberOfPaths(), newSeed, newInitialValue, newRiskFreeRate, newSigma, newTheta, newNu);
}
@Override
public AssetModelMonteCarloSimulationModel getCloneWithModifiedSeed(final int seed) {
final Map dataModified = new HashMap<>();
dataModified.put("seed", new Integer(seed));
return getCloneWithModifiedData(dataModified);
}
@Override
public int getNumberOfPaths() {
return process.getNumberOfPaths();
}
@Override
public TimeDiscretization getTimeDiscretization() {
return process.getTimeDiscretization();
}
@Override
public double getTime(final int timeIndex) {
return process.getTime(timeIndex);
}
@Override
public int getTimeIndex(final double time) {
return process.getTimeIndex(time);
}
@Override
public RandomVariable getRandomVariableForConstant(final double value) {
return model.getRandomVariableForConstant(value);
}
@Override
public RandomVariable getMonteCarloWeights(final int timeIndex) throws CalculationException {
return process.getMonteCarloWeights(timeIndex);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy