All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.montecarlo.assetderivativevaluation.models.InhomogenousBachelierModel Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 20.01.2004
 */
package net.finmath.montecarlo.assetderivativevaluation.models;

import java.util.Map;

import net.finmath.montecarlo.RandomVariableFactory;
import net.finmath.montecarlo.RandomVariableFromArrayFactory;
import net.finmath.montecarlo.model.AbstractProcessModel;
import net.finmath.montecarlo.process.MonteCarloProcess;
import net.finmath.stochastic.RandomVariable;
import net.finmath.stochastic.Scalar;

/**
 * This class implements a (variant of the) Bachelier model, that is, it provides the drift and volatility specification
 * and performs the calculation of the numeraire (consistent with the dynamics, i.e. the drift).
 *
 * The model is
 * \[
 * 	dS = r S \mathrm{d}t + \sigma \mathrm{d}W, \quad S(0) = S_{0},
 * \]
 * \[
 * 	dN = r N \mathrm{d}t, \quad N(0) = N_{0},
 * \]
 *
 * 

* * Note, the model corresponds to the following dynamic for the numeraire relative stock value \( F(t) = S(t)/N(t) \): * \[ * \mathrm{d}F = exp(-r t) \sigma \mathrm{d}W, \quad F(0) = F_{0} = S_{0}/N_{0}, * \] * *

* * Note that the variance of \( \int_{t}^{t+\Delta t} \mathrm{d}F \) is * \[ \int_{t}^{t+\Delta t} ( exp(-r s) \sigma )^{2} \mathrm{d}s = \frac{\exp(-2 r t)}{2 r} \left( 1 - \exp(-2 r \Delta t) \right) \] * * * The class provides the model of S to an {@link net.finmath.montecarlo.process.MonteCarloProcess} via the specification of * \( f = \text{identity} \), \( \mu = \frac{exp(r \Delta t_{i}) - 1}{\Delta t_{i}} S(t_{i}) \), \( \lambda_{1,1} = \sigma \frac{exp(-2 r t_{i}) - exp(-2 r t_{i+1})}{2 r \Delta t_{i}} \), i.e., * of the SDE * \[ * dX = \mu dt + \lambda_{1,1} dW, \quad X(0) = \log(S_{0}), * \] * with \( S = X \). See {@link net.finmath.montecarlo.process.MonteCarloProcess} for the notation. * * The model's implied Bachelier volatility for a given maturity T is * volatility * Math.sqrt((Math.exp(2 * riskFreeRate * optionMaturity) - 1)/(2*riskFreeRate*optionMaturity)) * * @author Christian Fries * @see net.finmath.montecarlo.process.MonteCarloProcess The interface for numerical schemes. * @see net.finmath.montecarlo.model.ProcessModel The interface for models provinding parameters to numerical schemes. * @version 1.0 */ public class InhomogenousBachelierModel extends AbstractProcessModel { private final RandomVariableFactory randomVariableFactory; private final RandomVariable initialValue; private final RandomVariable riskFreeRate; // Actually the same as the drift (which is not stochastic) private final RandomVariable volatility; public InhomogenousBachelierModel(RandomVariableFactory randomVariableFactory, RandomVariable initialValue, RandomVariable riskFreeRate, RandomVariable volatility) { super(); this.randomVariableFactory = randomVariableFactory; this.initialValue = initialValue; this.riskFreeRate = riskFreeRate; this.volatility = volatility; } /** * Create a Monte-Carlo simulation using given time discretization. * * @param initialValue Spot value. * @param riskFreeRate The risk free rate. * @param volatility The volatility. */ public InhomogenousBachelierModel( final double initialValue, final double riskFreeRate, final double volatility) { super(); this.randomVariableFactory = new RandomVariableFromArrayFactory(); this.initialValue = randomVariableFactory.createRandomVariable(initialValue); this.riskFreeRate = randomVariableFactory.createRandomVariable(riskFreeRate); this.volatility = randomVariableFactory.createRandomVariable(volatility); } @Override public RandomVariable[] getInitialState(MonteCarloProcess process) { return new RandomVariable[] { initialValue }; } @Override public RandomVariable[] getDrift(final MonteCarloProcess process, final int timeIndex, final RandomVariable[] realizationAtTimeIndex, final RandomVariable[] realizationPredictor) { final double dt = process.getTimeDiscretization().getTimeStep(timeIndex); final RandomVariable[] drift = new RandomVariable[realizationAtTimeIndex.length]; for(int componentIndex = 0; componentIndex dataModified) { /* * Determine the new model parameters from the provided parameter map. */ final RandomVariableFactory newRandomVariableFactory = (RandomVariableFactory)dataModified.getOrDefault("randomVariableFactory", randomVariableFactory); final RandomVariable newInitialValue = RandomVariableFactory.getRandomVariableOrDefault(newRandomVariableFactory, dataModified.get("initialValue"), initialValue); final RandomVariable newRiskFreeRate = RandomVariableFactory.getRandomVariableOrDefault(newRandomVariableFactory, dataModified.get("riskFreeRate"), riskFreeRate); final RandomVariable newVolatility = RandomVariableFactory.getRandomVariableOrDefault(newRandomVariableFactory, dataModified.get("volatility"), volatility); return new InhomogenousBachelierModel(newRandomVariableFactory, newInitialValue, newRiskFreeRate, newVolatility); } @Override public String toString() { return super.toString() + "\n" + "InhomogenousBachelierModel:\n" + " initial value...:" + initialValue + "\n" + " risk free rate..:" + riskFreeRate + "\n" + " volatiliy.......:" + volatility; } /** * Returns the initial value parameter of this model. * * @return Returns the initialValue */ public RandomVariable getInitialValue() { return initialValue; } /** * Returns the risk free rate parameter of this model. * * @return Returns the riskFreeRate. */ public RandomVariable getRiskFreeRate() { return riskFreeRate; } /** * Returns the volatility parameter of this model. * * @return Returns the volatility. */ public RandomVariable getVolatility() { return volatility; } public RandomVariable getImpliedBachelierVolatility(final double maturity) { // The Bachelier volatiltiy is the square-root of (the integral from 0 to T of the square of sigma * Math.exp(r t) divided by T) final RandomVariable dfStepSquaredLog = riskFreeRate.mult(-2.0 * maturity); final RandomVariable dfStepSquared = dfStepSquaredLog.exp(); return volatility.mult(dfStepSquared.sub(1.0).div(dfStepSquaredLog).sqrt()); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy