net.finmath.montecarlo.assetderivativevaluation.models.MertonModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 20.01.2012
*/
package net.finmath.montecarlo.assetderivativevaluation.models;
import java.util.Map;
import net.finmath.marketdata.model.curves.DiscountCurve;
import net.finmath.modelling.descriptor.MertonModelDescriptor;
import net.finmath.montecarlo.RandomVariableFactory;
import net.finmath.montecarlo.RandomVariableFromArrayFactory;
import net.finmath.montecarlo.model.AbstractProcessModel;
import net.finmath.montecarlo.model.ProcessModel;
import net.finmath.montecarlo.process.MonteCarloProcess;
import net.finmath.stochastic.RandomVariable;
import net.finmath.stochastic.Scalar;
/**
* This class implements a Merton Model, that is, it provides the drift and volatility specification
* and performs the calculation of the numeraire (consistent with the dynamics, i.e. the drift).
*
* The model is
* \[
* dS = \mu S dt + \sigma S dW + S dJ, \quad S(0) = S_{0},
* \]
* \[
* dN = r N dt, \quad N(0) = N_{0},
* \]
* where \( W \) is Brownian motion and \( J \) is a jump process (compound Poisson process).
*
* The process \( J \) is given by \( J(t) = \sum_{i=1}^{N(t)} (Y_{i}-1) \), where
* \( \log(Y_{i}) \) are i.i.d. normals with mean \( a - \frac{1}{2} b^{2} \) and standard deviation \( b \).
* Here \( a \) is the jump size mean and \( b \) is the jump size std. dev.
*
* The model can be rewritten as \( S = \exp(X) \), where
* \[
* dX = \mu dt + \sigma dW + dJ^{X}, \quad X(0) = \log(S_{0}),
* \]
* with
* \[
* J^{X}(t) = \sum_{i=1}^{N(t)} \log(Y_{i})
* \]
* with \( \mu = r - \frac{1}{2} \sigma^2 - (exp(a)-1) \lambda \).
*
* The class provides the model of S to an {@link net.finmath.montecarlo.process.MonteCarloProcess}
via the specification of
* \( f = exp \), \( \mu = r - \frac{1}{2} \sigma^2 - (exp(a)-1) \lambda \), \( \lambda_{1,1} = \sigma, \lambda_{1,2} = a - \frac{1}{2} b^2, \lambda_{1,3} = b \), i.e.,
* of the SDE
* \[
* dX = \mu dt + \lambda_{1,1} dW + \lambda_{1,2} dN + \lambda_{1,3} Z dN, \quad X(0) = \log(S_{0}),
* \]
* with \( S = f(X) \). See {@link net.finmath.montecarlo.process.MonteCarloProcess} for the notation.
*
* For an example on the construction of the three factors \( dW \), \( dN \), and \( Z dN \) see {@link net.finmath.montecarlo.assetderivativevaluation.MonteCarloMertonModel}.
*
* @author Christian Fries
* @see net.finmath.montecarlo.assetderivativevaluation.MonteCarloMertonModel
* @see net.finmath.montecarlo.process.MonteCarloProcess The interface for numerical schemes.
* @see net.finmath.montecarlo.model.ProcessModel The interface for models provinding parameters to numerical schemes.
* @version 1.0
*/
public class MertonModel extends AbstractProcessModel {
private static final RandomVariable ZERO = new Scalar(0.0);
private final RandomVariable initialValue;
private final DiscountCurve discountCurveForForwardRate;
private final RandomVariable riskFreeRate; // Constant rate, used if discountCurveForForwardRate is null
private final RandomVariable volatility;
private final DiscountCurve discountCurveForDiscountRate;
private final RandomVariable discountRate; // Constant rate, used if discountCurveForForwardRate is null
private final RandomVariable jumpIntensity;
private final RandomVariable jumpSizeMean;
private final RandomVariable jumpSizeStdDev;
private final RandomVariableFactory randomVariableFactory;
/**
* Create a Merton model.
*
* @param initialValue \( S_{0} \) - spot - initial value of S
* @param discountCurveForForwardRate The curve specifying \( t \mapsto exp(- r^{\text{c}}(t) \cdot t) \) - with \( r^{\text{c}}(t) \) the risk free rate
* @param volatility The log volatility.
* @param discountCurveForDiscountRate The curve specifying \( t \mapsto exp(- r^{\text{d}}(t) \cdot t) \) - with \( r^{\text{d}}(t) \) the discount rate
* @param jumpIntensity The intensity parameter lambda of the compound Poisson process.
* @param jumpSizeMean The mean jump size of the normal distributes jump sizes of the compound Poisson process.
* @param jumpSizeStDev The standard deviation of the normal distributes jump sizes of the compound Poisson process.
* @param randomVariableFactory The factory to be used to construct random variables.
*/
public MertonModel(
final RandomVariable initialValue,
final DiscountCurve discountCurveForForwardRate,
final RandomVariable volatility,
final DiscountCurve discountCurveForDiscountRate,
final RandomVariable jumpIntensity,
final RandomVariable jumpSizeMean,
final RandomVariable jumpSizeStDev,
final RandomVariableFactory randomVariableFactory
) {
super();
this.initialValue = initialValue;
this.discountCurveForForwardRate = discountCurveForForwardRate;
this.riskFreeRate = null;
this.volatility = volatility;
this.discountCurveForDiscountRate = discountCurveForDiscountRate;
this.discountRate = null;
this.jumpIntensity = jumpIntensity;
this.jumpSizeMean = jumpSizeMean;
this.jumpSizeStdDev = jumpSizeStDev;
this.randomVariableFactory = randomVariableFactory;
}
/**
* Create a Merton model.
*
* @param initialValue \( S_{0} \) - spot - initial value of S
* @param discountCurveForForwardRate The curve specifying \( t \mapsto exp(- r^{\text{c}}(t) \cdot t) \) - with \( r^{\text{c}}(t) \) the risk free rate
* @param volatility The log volatility.
* @param discountCurveForDiscountRate The curve specifying \( t \mapsto exp(- r^{\text{d}}(t) \cdot t) \) - with \( r^{\text{d}}(t) \) the discount rate
* @param jumpIntensity The intensity parameter lambda of the compound Poisson process.
* @param jumpSizeMean The mean jump size of the normal distributes jump sizes of the compound Poisson process.
* @param jumpSizeStDev The standard deviation of the normal distributes jump sizes of the compound Poisson process.
* @param randomVariableFactory The factory to be used to construct random variables.
*/
public MertonModel(
final double initialValue,
final DiscountCurve discountCurveForForwardRate,
final double volatility,
final DiscountCurve discountCurveForDiscountRate,
final double jumpIntensity,
final double jumpSizeMean,
final double jumpSizeStDev,
final RandomVariableFactory randomVariableFactory
) {
super();
this.randomVariableFactory = randomVariableFactory;
this.initialValue = randomVariableFactory.createRandomVariable(initialValue);
this.discountCurveForForwardRate = discountCurveForForwardRate;
riskFreeRate = null;
this.volatility = randomVariableFactory.createRandomVariable(volatility);
this.discountCurveForDiscountRate = discountCurveForDiscountRate;
discountRate = null;
this.jumpIntensity = randomVariableFactory.createRandomVariable(jumpIntensity);
this.jumpSizeMean = randomVariableFactory.createRandomVariable(jumpSizeMean);
jumpSizeStdDev = randomVariableFactory.createRandomVariable(jumpSizeStDev);
}
/**
* Create a Merton model.
*
* @param initialValue Spot value.
* @param riskFreeRate The risk free rate.
* @param volatility The log volatility.
* @param discountRate The discount rate used in the numeraire.
* @param jumpIntensity The intensity parameter lambda of the compound Poisson process.
* @param jumpSizeMean The mean jump size of the normal distributes jump sizes of the compound Poisson process.
* @param jumpSizeStDev The standard deviation of the normal distributes jump sizes of the compound Poisson process.
* @param randomVariableFactory The factory to be used to construct random variables.
*/
public MertonModel(
final RandomVariable initialValue,
final RandomVariable riskFreeRate,
final RandomVariable volatility,
final RandomVariable discountRate,
final RandomVariable jumpIntensity,
final RandomVariable jumpSizeMean,
final RandomVariable jumpSizeStDev,
final RandomVariableFactory randomVariableFactory
) {
super();
this.randomVariableFactory = randomVariableFactory;
this.initialValue = initialValue;
this.discountCurveForForwardRate = null;
this.riskFreeRate = riskFreeRate;
this.volatility = volatility;
this.discountCurveForDiscountRate = null;
this.discountRate = discountRate;
this.jumpIntensity = jumpIntensity;
this.jumpSizeMean = jumpSizeMean;
this.jumpSizeStdDev = jumpSizeStDev;
}
/**
* Create a Merton model.
*
* @param initialValue Spot value.
* @param riskFreeRate The risk free rate.
* @param volatility The log volatility.
* @param discountRate The discount rate used in the numeraire.
* @param jumpIntensity The intensity parameter lambda of the compound Poisson process.
* @param jumpSizeMean The mean jump size of the normal distributes jump sizes of the compound Poisson process.
* @param jumpSizeStDev The standard deviation of the normal distributes jump sizes of the compound Poisson process.
* @param randomVariableFactory The factory to be used to construct random variables.
*/
public MertonModel(
final double initialValue,
final double riskFreeRate,
final double volatility,
final double discountRate,
final double jumpIntensity,
final double jumpSizeMean,
final double jumpSizeStDev,
final RandomVariableFactory randomVariableFactory
) {
this(randomVariableFactory.createRandomVariable(initialValue),
randomVariableFactory.createRandomVariable(riskFreeRate),
randomVariableFactory.createRandomVariable(volatility),
randomVariableFactory.createRandomVariable(discountRate),
randomVariableFactory.createRandomVariable(jumpIntensity),
randomVariableFactory.createRandomVariable(jumpSizeMean),
randomVariableFactory.createRandomVariable(jumpSizeStDev),
randomVariableFactory);
}
/**
* Create the model from a descriptor.
*
* @param descriptor A descriptor of the model.
*/
public MertonModel(final MertonModelDescriptor descriptor) {
this(descriptor.getInitialValue(),
descriptor.getDiscountCurveForForwardRate(),
descriptor.getVolatility(),
descriptor.getDiscountCurveForDiscountRate(),
descriptor.getJumpIntensity(),
descriptor.getJumpSizeMean(),
descriptor.getJumpSizeStdDev());
}
/**
* Create a Merton model.
*
* @param initialValue \( S_{0} \) - spot - initial value of S
* @param discountCurveForForwardRate The curve specifying \( t \mapsto exp(- r^{\text{c}}(t) \cdot t) \) - with \( r^{\text{c}}(t) \) the risk free rate
* @param volatility The log volatility.
* @param discountCurveForDiscountRate The curve specifying \( t \mapsto exp(- r^{\text{d}}(t) \cdot t) \) - with \( r^{\text{d}}(t) \) the discount rate
* @param jumpIntensity The intensity parameter lambda of the compound Poisson process.
* @param jumpSizeMean The mean jump size of the normal distributes jump sizes of the compound Poisson process.
* @param jumpSizeStDev The standard deviation of the normal distributes jump sizes of the compound Poisson process.
*/
public MertonModel(
final double initialValue,
final DiscountCurve discountCurveForForwardRate,
final double volatility,
final DiscountCurve discountCurveForDiscountRate,
final double jumpIntensity,
final double jumpSizeMean,
final double jumpSizeStDev
) {
this(initialValue, discountCurveForForwardRate, volatility, discountCurveForDiscountRate,
jumpIntensity, jumpSizeMean, jumpSizeStDev, new RandomVariableFromArrayFactory());
}
/**
* Create a Merton model.
*
* @param initialValue Spot value.
* @param riskFreeRate The risk free rate.
* @param volatility The log volatility.
* @param discountRate The discount rate used in the numeraire.
* @param jumpIntensity The intensity parameter lambda of the compound Poisson process.
* @param jumpSizeMean The mean jump size of the normal distributes jump sizes of the compound Poisson process.
* @param jumpSizeStDev The standard deviation of the normal distributes jump sizes of the compound Poisson process.
*/
public MertonModel(
final double initialValue,
final double riskFreeRate,
final double volatility,
final double discountRate,
final double jumpIntensity,
final double jumpSizeMean,
final double jumpSizeStDev
) {
this(initialValue, riskFreeRate, volatility, discountRate, jumpIntensity, jumpSizeMean, jumpSizeStDev, new RandomVariableFromArrayFactory());
}
/**
* Create a Merton model.
*
* @param initialValue Spot value.
* @param riskFreeRate The risk free rate.
* @param volatility The log volatility.
* @param jumpIntensity The intensity parameter lambda of the compound Poisson process.
* @param jumpSizeMean The mean jump size of the normal distributes jump sizes of the compound Poisson process.
* @param jumpSizeStDev The standard deviation of the normal distributes jump sizes of the compound Poisson process.
*/
public MertonModel(
final double initialValue,
final double riskFreeRate,
final double volatility,
final double jumpIntensity,
final double jumpSizeMean,
final double jumpSizeStDev
) {
this(initialValue, riskFreeRate, volatility, riskFreeRate,jumpIntensity,jumpSizeMean,jumpSizeStDev);
}
@Override
public RandomVariable applyStateSpaceTransform(final MonteCarloProcess process, final int timeIndex, final int componentIndex, final RandomVariable randomVariable) {
return randomVariable.exp();
}
@Override
public RandomVariable applyStateSpaceTransformInverse(final MonteCarloProcess process, final int timeIndex, final int componentIndex, final RandomVariable randomVariable) {
return randomVariable.log();
}
@Override
public RandomVariable[] getInitialState(MonteCarloProcess process) {
return new RandomVariable[] { initialValue.log() };
}
@Override
public RandomVariable getNumeraire(MonteCarloProcess process, final double time) {
if(discountCurveForDiscountRate != null) {
return getRandomVariableForConstant(1.0/discountCurveForDiscountRate.getDiscountFactor(time));
}
else {
return discountRate.mult(time).exp();
}
}
@Override
public RandomVariable[] getDrift(final MonteCarloProcess process, final int timeIndex, final RandomVariable[] realizationAtTimeIndex, final RandomVariable[] realizationPredictor) {
RandomVariable riskFreeRateAtTimeStep;
if(discountCurveForForwardRate != null) {
final double time = process.getTime(timeIndex);
final double timeNext = process.getTime(timeIndex+1);
riskFreeRateAtTimeStep = getRandomVariableForConstant(Math.log(discountCurveForForwardRate.getDiscountFactor(time) / discountCurveForForwardRate.getDiscountFactor(timeNext)) / (timeNext-time));
}else {
riskFreeRateAtTimeStep = riskFreeRate;
}
return new RandomVariable[] {
riskFreeRateAtTimeStep
.sub(jumpSizeMean.exp().sub(1.0).mult(jumpIntensity))
.sub(volatility.squared().div(2))
};
}
@Override
public RandomVariable[] getFactorLoading(final MonteCarloProcess process, final int timeIndex, final int componentIndex, final RandomVariable[] realizationAtTimeIndex) {
final RandomVariable[] factors = new RandomVariable[3];
factors[0] = volatility;
factors[1] = jumpSizeStdDev;
factors[2] = jumpSizeMean.sub(jumpSizeStdDev.squared().div(2));
return factors;
}
@Override
public int getNumberOfComponents() {
return 1;
}
@Override
public int getNumberOfFactors() {
return 1;
}
@Override
public RandomVariable getRandomVariableForConstant(final double value) {
return randomVariableFactory.createRandomVariable(value);
}
@Override
public ProcessModel getCloneWithModifiedData(final Map dataModified) {
/*
* Determine the new model parameters from the provided parameter map.
*/
final RandomVariableFactory newRandomVariableFactory = (RandomVariableFactory)dataModified.getOrDefault("randomVariableFactory", randomVariableFactory);
final RandomVariable newInitialValue = RandomVariableFactory.getRandomVariableOrDefault(newRandomVariableFactory, dataModified.get("initialValue"), initialValue);
final RandomVariable newRiskFreeRate = RandomVariableFactory.getRandomVariableOrDefault(newRandomVariableFactory, dataModified.get("riskFreeRate"), riskFreeRate);
final RandomVariable newVolatility = RandomVariableFactory.getRandomVariableOrDefault(newRandomVariableFactory, dataModified.get("volatility"), volatility);
final RandomVariable newDiscountRate = RandomVariableFactory.getRandomVariableOrDefault(newRandomVariableFactory, dataModified.get("discountRate"), discountRate);
final RandomVariable newJumpIntensity = RandomVariableFactory.getRandomVariableOrDefault(newRandomVariableFactory, dataModified.get("riskFreeRate"), jumpIntensity);
final RandomVariable newJumpSizeMean = RandomVariableFactory.getRandomVariableOrDefault(newRandomVariableFactory, dataModified.get("jumpSizeMean"), jumpSizeMean);
final RandomVariable newJumpSizeStDev = RandomVariableFactory.getRandomVariableOrDefault(newRandomVariableFactory, dataModified.get("jumpSizeStdDev"), jumpSizeStdDev);
return new MertonModel(newInitialValue, newRiskFreeRate, newVolatility, newDiscountRate, newJumpIntensity, newJumpSizeMean, newJumpSizeStDev, newRandomVariableFactory);
}
/**
* @return the riskFreeRate
*/
public RandomVariable getRiskFreeRate() {
return riskFreeRate;
}
/**
* @return the volatility
*/
public RandomVariable getVolatility() {
return volatility;
}
/**
* @return the jumpIntensity
*/
public RandomVariable getJumpIntensity() {
return jumpIntensity;
}
/**
* @return the jumpSizeMean
*/
public RandomVariable getJumpSizeMean() {
return jumpSizeMean;
}
/**
* @return the jumpSizeStdDev
*/
public RandomVariable getJumpSizeStdDev() {
return jumpSizeStdDev;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy