net.finmath.montecarlo.automaticdifferentiation.backward.RandomVariableDifferentiableAADFactory Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 21.06.2017
*/
package net.finmath.montecarlo.automaticdifferentiation.backward;
import java.util.HashMap;
import java.util.Map;
import net.finmath.montecarlo.RandomVariableFactory;
import net.finmath.montecarlo.RandomVariableFromArrayFactory;
import net.finmath.montecarlo.automaticdifferentiation.AbstractRandomVariableDifferentiableFactory;
import net.finmath.montecarlo.automaticdifferentiation.RandomVariableDifferentiable;
/**
* @author Christian Fries
*
* @version 1.1
*/
public class RandomVariableDifferentiableAADFactory extends AbstractRandomVariableDifferentiableFactory {
private static final long serialVersionUID = -6035830497454502442L;
public enum DiracDeltaApproximationMethod {
DISCRETE_DELTA,
REGRESSION_ON_DENSITY,
REGRESSION_ON_DISTRIBUITON,
ONE,
ZERO
}
/*
* diractDeltaApproximationWidthPerStdDev defines the width of the discrete approximation of the Dirac peak
* from differentiation of a jump (barrier). It corresponds to the finite difference shift
* when the derivative is calculated via finite differences.
*
* It is a multiplicator to the standard deviation of the random variable.
*/
private final DiracDeltaApproximationMethod diracDeltaApproximationMethod;
private final double diracDeltaApproximationWidthPerStdDev;
private final double diracDeltaApproximationDensityRegressionWidthPerStdDev;
private final boolean isGradientRetainsLeafNodesOnly;
/**
* Create a factory for objects of type {@link RandomVariableDifferentiableAAD}.
*
* Supported propeties are
*
* - isGradientRetainsLeafNodesOnly: Boolean
* - diracDeltaApproximationMethod: String
* - diracDeltaApproximationWidthPerStdDev: Double
*
*
* @param randomVariableFactoryForNonDifferentiable Random variable factory for the underlying values.
* @param properties A key value map with properties.
*/
public RandomVariableDifferentiableAADFactory(final RandomVariableFactory randomVariableFactoryForNonDifferentiable, final Map properties) {
super(randomVariableFactoryForNonDifferentiable);
/*
* diractDeltaApproximationWidthPerStdDev = 0.05 corresponds to 2% of paths used for estimation bin 0.05 = 2%, 0.025 = 1%
* diracDeltaApproximationDensityRegressionWidthPerStdDev = 0.50 corresponds to 20% of path used for regression of density, 1.00 = 40%.
*/
diracDeltaApproximationMethod = DiracDeltaApproximationMethod.valueOf((String)properties.getOrDefault("diracDeltaApproximationMethod", DiracDeltaApproximationMethod.DISCRETE_DELTA.name()));
diracDeltaApproximationWidthPerStdDev = (Double)properties.getOrDefault("diracDeltaApproximationWidthPerStdDev", properties.getOrDefault("barrierDiracWidth", 0.05));
diracDeltaApproximationDensityRegressionWidthPerStdDev = (Double)properties.getOrDefault("diracDeltaApproximationDensityRegressionWidthPerStdDev", 0.5);
isGradientRetainsLeafNodesOnly = (Boolean) properties.getOrDefault("isGradientRetainsLeafNodesOnly", true);
}
/**
* @param properties A key value map with properties.
*/
public RandomVariableDifferentiableAADFactory(final Map properties) {
this(new RandomVariableFromArrayFactory(), properties);
}
/**
* @param randomVariableFactoryForNonDifferentiable Random variable factory for the underlying values.
*/
public RandomVariableDifferentiableAADFactory(final RandomVariableFactory randomVariableFactoryForNonDifferentiable) {
this(randomVariableFactoryForNonDifferentiable, new HashMap());
}
public RandomVariableDifferentiableAADFactory() {
this(new RandomVariableFromArrayFactory());
}
@Override
public RandomVariableDifferentiable createRandomVariable(final double time, final double value) {
return new RandomVariableDifferentiableAAD(createRandomVariableNonDifferentiable(time, value), this);
}
@Override
public RandomVariableDifferentiable createRandomVariable(final double time, final double[] values) {
return new RandomVariableDifferentiableAAD(createRandomVariableNonDifferentiable(time, values), this);
}
public DiracDeltaApproximationMethod getDiracDeltaApproximationMethod() {
return diracDeltaApproximationMethod;
}
public double getDiracDeltaApproximationWidthPerStdDev() {
return diracDeltaApproximationWidthPerStdDev;
}
public double getDiracDeltaApproximationDensityRegressionWidthPerStdDev() {
return diracDeltaApproximationDensityRegressionWidthPerStdDev;
}
@Deprecated
public double getBarrierDiracWidth() {
return getDiracDeltaApproximationWidthPerStdDev();
}
public boolean isGradientRetainsLeafNodesOnly() {
return isGradientRetainsLeafNodesOnly;
}
@Override
public String toString() {
return "RandomVariableDifferentiableAADFactory [diracDeltaApproximationMethod=" + diracDeltaApproximationMethod
+ ", diracDeltaApproximationWidthPerStdDev=" + diracDeltaApproximationWidthPerStdDev
+ ", diracDeltaApproximationDensityRegressionWidthPerStdDev="
+ diracDeltaApproximationDensityRegressionWidthPerStdDev + ", isGradientRetainsLeafNodesOnly="
+ isGradientRetainsLeafNodesOnly + ", toString()=" + super.toString() + "]";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy