All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.montecarlo.automaticdifferentiation.backward.RandomVariableDifferentiableAADFactory Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 21.06.2017
 */

package net.finmath.montecarlo.automaticdifferentiation.backward;

import java.util.HashMap;
import java.util.Map;

import net.finmath.montecarlo.RandomVariableFactory;
import net.finmath.montecarlo.RandomVariableFromArrayFactory;
import net.finmath.montecarlo.automaticdifferentiation.AbstractRandomVariableDifferentiableFactory;
import net.finmath.montecarlo.automaticdifferentiation.RandomVariableDifferentiable;

/**
 * @author Christian Fries
 *
 * @version 1.1
 */
public class RandomVariableDifferentiableAADFactory extends AbstractRandomVariableDifferentiableFactory {

	private static final long serialVersionUID = -6035830497454502442L;

	public enum DiracDeltaApproximationMethod {
		DISCRETE_DELTA,
		REGRESSION_ON_DENSITY,
		REGRESSION_ON_DISTRIBUITON,
		ONE,
		ZERO
	}

	/*
	 * diractDeltaApproximationWidthPerStdDev defines the width of the discrete approximation of the Dirac peak
	 * from differentiation of a jump (barrier). It corresponds to the finite difference shift
	 * when the derivative is calculated via finite differences.
	 *
	 * It is a multiplicator to the standard deviation of the random variable.
	 */
	private final DiracDeltaApproximationMethod diracDeltaApproximationMethod;
	private final double diracDeltaApproximationWidthPerStdDev;
	private final double diracDeltaApproximationDensityRegressionWidthPerStdDev;

	private final boolean isGradientRetainsLeafNodesOnly;

	/**
	 * Create a factory for objects of type {@link RandomVariableDifferentiableAAD}.
	 *
	 * Supported propeties are
	 * 
    *
  • isGradientRetainsLeafNodesOnly: Boolean
  • *
  • diracDeltaApproximationMethod: String
  • *
  • diracDeltaApproximationWidthPerStdDev: Double
  • *
* * @param randomVariableFactoryForNonDifferentiable Random variable factory for the underlying values. * @param properties A key value map with properties. */ public RandomVariableDifferentiableAADFactory(final RandomVariableFactory randomVariableFactoryForNonDifferentiable, final Map properties) { super(randomVariableFactoryForNonDifferentiable); /* * diractDeltaApproximationWidthPerStdDev = 0.05 corresponds to 2% of paths used for estimation bin 0.05 = 2%, 0.025 = 1% * diracDeltaApproximationDensityRegressionWidthPerStdDev = 0.50 corresponds to 20% of path used for regression of density, 1.00 = 40%. */ diracDeltaApproximationMethod = DiracDeltaApproximationMethod.valueOf((String)properties.getOrDefault("diracDeltaApproximationMethod", DiracDeltaApproximationMethod.DISCRETE_DELTA.name())); diracDeltaApproximationWidthPerStdDev = (Double)properties.getOrDefault("diracDeltaApproximationWidthPerStdDev", properties.getOrDefault("barrierDiracWidth", 0.05)); diracDeltaApproximationDensityRegressionWidthPerStdDev = (Double)properties.getOrDefault("diracDeltaApproximationDensityRegressionWidthPerStdDev", 0.5); isGradientRetainsLeafNodesOnly = (Boolean) properties.getOrDefault("isGradientRetainsLeafNodesOnly", true); } /** * @param properties A key value map with properties. */ public RandomVariableDifferentiableAADFactory(final Map properties) { this(new RandomVariableFromArrayFactory(), properties); } /** * @param randomVariableFactoryForNonDifferentiable Random variable factory for the underlying values. */ public RandomVariableDifferentiableAADFactory(final RandomVariableFactory randomVariableFactoryForNonDifferentiable) { this(randomVariableFactoryForNonDifferentiable, new HashMap()); } public RandomVariableDifferentiableAADFactory() { this(new RandomVariableFromArrayFactory()); } @Override public RandomVariableDifferentiable createRandomVariable(final double time, final double value) { return new RandomVariableDifferentiableAAD(createRandomVariableNonDifferentiable(time, value), this); } @Override public RandomVariableDifferentiable createRandomVariable(final double time, final double[] values) { return new RandomVariableDifferentiableAAD(createRandomVariableNonDifferentiable(time, values), this); } public DiracDeltaApproximationMethod getDiracDeltaApproximationMethod() { return diracDeltaApproximationMethod; } public double getDiracDeltaApproximationWidthPerStdDev() { return diracDeltaApproximationWidthPerStdDev; } public double getDiracDeltaApproximationDensityRegressionWidthPerStdDev() { return diracDeltaApproximationDensityRegressionWidthPerStdDev; } @Deprecated public double getBarrierDiracWidth() { return getDiracDeltaApproximationWidthPerStdDev(); } public boolean isGradientRetainsLeafNodesOnly() { return isGradientRetainsLeafNodesOnly; } @Override public String toString() { return "RandomVariableDifferentiableAADFactory [diracDeltaApproximationMethod=" + diracDeltaApproximationMethod + ", diracDeltaApproximationWidthPerStdDev=" + diracDeltaApproximationWidthPerStdDev + ", diracDeltaApproximationDensityRegressionWidthPerStdDev=" + diracDeltaApproximationDensityRegressionWidthPerStdDev + ", isGradientRetainsLeafNodesOnly=" + isGradientRetainsLeafNodesOnly + ", toString()=" + super.toString() + "]"; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy