net.finmath.montecarlo.interestrate.models.HullWhiteModelWithShiftExtension Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 09.02.2004
*/
package net.finmath.montecarlo.interestrate.models;
import java.time.LocalDateTime;
import java.time.LocalTime;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import net.finmath.exception.CalculationException;
import net.finmath.marketdata.model.AnalyticModel;
import net.finmath.marketdata.model.curves.DiscountCurve;
import net.finmath.marketdata.model.curves.DiscountCurveFromForwardCurve;
import net.finmath.marketdata.model.curves.ForwardCurve;
import net.finmath.montecarlo.RandomVariableFactory;
import net.finmath.montecarlo.RandomVariableFromArrayFactory;
import net.finmath.montecarlo.interestrate.LIBORMarketModel;
import net.finmath.montecarlo.interestrate.LIBORModel;
import net.finmath.montecarlo.interestrate.models.covariance.ShortRateVolatilityModel;
import net.finmath.montecarlo.model.AbstractProcessModel;
import net.finmath.montecarlo.process.MonteCarloProcess;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;
/**
* Implements a Hull-White model with time dependent mean reversion speed and time dependent short rate volatility.
*
*
* Note: This implementation is for illustrative purposes.
* For a numerically equivalent, more efficient implementation see {@link net.finmath.montecarlo.interestrate.models.HullWhiteModel}.
* Please use {@link net.finmath.montecarlo.interestrate.models.HullWhiteModel} for real applications.
*
*
*
* Model Dynamics
*
*
* The Hull-While model assumes the following dynamic for the short rate:
* \[ d r(t) = ( \theta(t) - a(t) r(t) ) d t + \sigma(t) d W(t) \text{,} \quad r(t_{0}) = r_{0} \text{,} \]
* where the function \( \theta \) determines the calibration to the initial forward curve,
* \( a \) is the mean reversion and \( \sigma \) is the instantaneous volatility.
*
* The dynamic above is under the equivalent martingale measure corresponding to the numeraire
* \[ N(t) = \exp\left( \int_0^t r(\tau) \mathrm{d}\tau \right) \text{.} \]
*
* The main task of this class is to provide the risk-neutral drift and the volatility to the numerical scheme (given the volatility model), simulating
* \( r(t_{i}) \). The class then also provides and the corresponding numeraire and forward rates (LIBORs).
*
*
* Time Discrete Model
*
*
* Assuming piecewise constant coefficients (mean reversion speed \( a \) and short
* rate volatility \( \sigma \) the class specifies the drift and factor loadings as
* piecewise constant functions for an Euler-scheme.
* The class provides the exact Euler step for the short rate r.
*
* More specifically (assuming a constant mean reversion speed \( a \) for a moment), considering
* \[ \Delta \bar{r}(t_{i}) = \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} d r(t) \]
* we find from
* \[ \exp(-a t) \ \left( \mathrm{d} \left( \exp(a t) r(t) \right) \right) \ = \ a r(t) + \mathrm{d} r(t) \ = \ \theta(t) \mathrm{d}t + \sigma(t) \mathrm{d}W(t) \]
* that
* \[ \exp(a t_{i+1}) r(t_{i+1}) - \exp(a t_{i}) r(t_{i}) \ = \ \int_{t_{i}}^{t_{i+1}} \left[ \exp(a t) \theta(t) \mathrm{d}t + \exp(a t) \sigma(t) \mathrm{d}W(t) \right] \]
* that is
* \[ r(t_{i+1}) - r(t_{i}) \ = \ -(1-\exp(-a (t_{i+1}-t_{i})) r(t_{i}) + \int_{t_{i}}^{t_{i+1}} \left[ \exp(-a (t_{i+1}-t)) \theta(t) \mathrm{d}t + \exp(-a (t_{i+1}-t)) \sigma(t) \mathrm{d}W(t) \right] \]
*
* Assuming piecewise constant \( \sigma \) and \( \theta \), being constant over \( (t_{i},t_{i}+\Delta t_{i}) \), we thus find
* \[ r(t_{i+1}) - r(t_{i}) \ = \ \frac{1-\exp(-a \Delta t_{i})}{a \Delta t_{i}} \left( ( \theta(t_{i}) - a \bar{r}(t_{i})) \Delta t_{i} \right) + \sqrt{\frac{1-\exp(-2 a \Delta t_{i})}{2 a \Delta t_{i}}} \sigma(t_{i}) \Delta W(t_{i}) \] .
*
* In other words, the Euler scheme is exact if the mean reversion \( a \) is replaced by the effective mean reversion
* \( \frac{1-\exp(-a \Delta t_{i})}{a \Delta t_{i}} a \) and the volatility is replaced by the
* effective volatility \( \sqrt{\frac{1-\exp(-2 a \Delta t_{i})}{2 a \Delta t_{i}}} \sigma(t_{i}) \).
*
* In the calculations above the mean reversion speed is treated as a constants, but it is straight
* forward to see that the same holds for piecewise constant mean reversion speeds, replacing
* the expression \( a \ t \) by \( \int_{0}^t a(s) \mathrm{d}s \).
*
*
* Calibration
*
*
* The drift of the short rate is calibrated to the given forward curve using
* \[ \theta(t) = \frac{\partial}{\partial T} f(0,t) + a(t) f(0,t) + \phi(t) \text{,} \]
* where the function \( f \) denotes the instantanenous forward rate and
* \( \phi(t) = \frac{1}{2} a \sigma^{2}(t) B(t)^{2} + \sigma^{2}(t) B(t) \frac{\partial}{\partial t} B(t) \) with \( B(t) = \frac{1-\exp(-a t)}{a} \).
*
*
* Volatility Model
*
*
* The Hull-White model is essentially equivalent to LIBOR Market Model where the forward rate normal volatility \( \sigma(t,T) \) is
* given by
* \[ \sigma(t,T_{i}) \ = \ (1 + L_{i}(t) (T_{i+1}-T_{i})) \sigma(t) \exp(-a (T_{i}-t)) \frac{1-\exp(-a (T_{i+1}-T_{i}))}{a (T_{i+1}-T_{i})} \]
* (where \( \{ T_{i} \} \) is the forward rates tenor time discretization (note that this is the normal volatility, not the log-normal volatility).
* Hence, we interpret both, short rate mean reversion speed and short rate volatility as part of the volatility model.
*
* The mean reversion speed and the short rate volatility have to be provided to this class via an object implementing
* {@link net.finmath.montecarlo.interestrate.models.covariance.ShortRateVolatilityModel}.
*
*
* @see net.finmath.montecarlo.interestrate.models.covariance.ShortRateVolatilityModel
* @see net.finmath.montecarlo.interestrate.models.HullWhiteModel
*
* @author Christian Fries
* @version 1.2
*/
public class HullWhiteModelWithShiftExtension extends AbstractProcessModel implements LIBORModel {
private enum DriftFormula {
ANALYTIC,
DISCRETE
}
private final DriftFormula driftFormula;
private final TimeDiscretization liborPeriodDiscretization;
private String forwardCurveName;
private final AnalyticModel analyticModel;
private final ForwardCurve forwardRateCurve;
private final DiscountCurve discountCurve;
private final DiscountCurve discountCurveFromForwardCurve;
private final RandomVariableFactory randomVariableFactory = new RandomVariableFromArrayFactory();
// Cache for the numeraires, needs to be invalidated if process changes
private final ConcurrentHashMap numeraires;
private MonteCarloProcess numerairesProcess = null;
private final ShortRateVolatilityModel volatilityModel;
/**
* Creates a Hull-White model which implements LIBORMarketModel
.
*
* @param liborPeriodDiscretization The forward rate discretization to be used in the getLIBOR
method.
* @param analyticModel The analytic model to be used (currently not used, may be null).
* @param forwardRateCurve The forward curve to be used (currently not used, - the model uses disocuntCurve only.
* @param discountCurve The disocuntCurve (currently also used to determine the forward curve).
* @param volatilityModel The volatility model specifying mean reversion and instantaneous volatility of the short rate.
* @param properties A map specifying model properties (currently not used, may be null).
*/
public HullWhiteModelWithShiftExtension(
final TimeDiscretization liborPeriodDiscretization,
final AnalyticModel analyticModel,
final ForwardCurve forwardRateCurve,
final DiscountCurve discountCurve,
final ShortRateVolatilityModel volatilityModel,
final Map properties
) {
this.liborPeriodDiscretization = liborPeriodDiscretization;
this.analyticModel = analyticModel;
this.forwardRateCurve = forwardRateCurve;
this.discountCurve = discountCurve;
this.volatilityModel = volatilityModel;
discountCurveFromForwardCurve = new DiscountCurveFromForwardCurve(forwardRateCurve);
numeraires = new ConcurrentHashMap<>();
if(properties != null && properties.containsKey("driftFormula")) {
driftFormula = DriftFormula.valueOf((String)properties.get("driftFormula"));
} else {
driftFormula = DriftFormula.DISCRETE;
}
}
@Override
public LocalDateTime getReferenceDate() {
return LocalDateTime.of(discountCurve.getReferenceDate(), LocalTime.of(0, 0));
}
@Override
public int getNumberOfComponents() {
return 1;
}
@Override
public int getNumberOfFactors()
{
return 1;
}
@Override
public RandomVariable applyStateSpaceTransform(final MonteCarloProcess process, final int timeIndex, final int componentIndex, final RandomVariable randomVariable) {
return randomVariable;
}
@Override
public RandomVariable applyStateSpaceTransformInverse(final MonteCarloProcess process, final int timeIndex, final int componentIndex, final RandomVariable randomVariable) {
return randomVariable;
}
@Override
public RandomVariable[] getInitialState(MonteCarloProcess process) {
// Initial value is zero - BrownianMotion serves as a factory here.
final RandomVariable zero = getRandomVariableForConstant(0.0);
return new RandomVariable[] { zero };
}
@Override
public RandomVariable getNumeraire(MonteCarloProcess process, final double time) throws CalculationException {
if(time < 0) {
return randomVariableFactory.createRandomVariable(discountCurve.getDiscountFactor(analyticModel, time));
}
if(time == process.getTime(0)) {
// Initial value of numeraire is one - BrownianMotion serves as a factory here.
final RandomVariable one = randomVariableFactory.createRandomVariable(1.0);
return one;
}
final int timeIndex = process.getTimeIndex(time);
if(timeIndex < 0) {
/*
* time is not part of the time discretization.
*/
// Find the time index prior to the current time (note: if time does not match a discretization point, we get a negative value, such that -index is next point).
int previousTimeIndex = process.getTimeIndex(time);
if(previousTimeIndex < 0) {
previousTimeIndex = -previousTimeIndex-1;
}
previousTimeIndex--;
final double previousTime = process.getTime(previousTimeIndex);
// Get value of short rate for period from previousTime to time.
final RandomVariable rate = getShortRate(process, previousTimeIndex);
// Piecewise constant rate for the increment
final RandomVariable integratedRate = rate.mult(time-previousTime);
return getNumeraire(process, previousTime).mult(integratedRate.exp());
}
/*
* Check if numeraire cache is values (i.e. process did not change)
*/
if(process != numerairesProcess) {
numeraires.clear();
numerairesProcess = process;
}
/*
* Check if numeraire is part of the cache
*/
RandomVariable numeraire = numeraires.get(timeIndex);
if(numeraire == null) {
/*
* Calculate the numeraire for timeIndex
*/
final RandomVariable zero = process.getStochasticDriver().getRandomVariableForConstant(0.0);
RandomVariable integratedRate = zero;
// Add r(t_{i}) (t_{i+1}-t_{i}) for i = 0 to previousTimeIndex-1
for(int i=0; i dataModified) {
throw new UnsupportedOperationException();
}
private RandomVariable getShortRate(final MonteCarloProcess process, final int timeIndex) throws CalculationException {
final double time = process.getTime(timeIndex);
RandomVariable value = process.getProcessValue(timeIndex, 0);
final double dt = process.getTimeDiscretization().getTimeStep(timeIndex);
final double zeroRate = -Math.log(discountCurveFromForwardCurve.getDiscountFactor(time+dt)/discountCurveFromForwardCurve.getDiscountFactor(time)) / dt;
double alpha = zeroRate;
/*
* One may try different drifts here. The value
* getDV(0,time)
* would correspond to the analytic value (for dt -> 0). The value
* getIntegratedDriftAdjustment(timeIndex)
* is the correct one given the discretized numeraire.
*/
if(driftFormula == DriftFormula.DISCRETE) {
alpha += getIntegratedDriftAdjustment(process, timeIndex);
} else if(driftFormula == DriftFormula.ANALYTIC) {
alpha += getDV(0,time);
}
value = value.add(alpha);
return value;
}
private RandomVariable getZeroCouponBond(final MonteCarloProcess process, final double time, final double maturity) throws CalculationException {
final int timeIndex = process.getTimeIndex(time);
if(timeIndex < 0) {
final int timeIndexLo = -timeIndex-1-1;
final double timeLo = process.getTime(timeIndexLo);
return getZeroCouponBond(process, timeLo, maturity).mult(getShortRate(process, timeIndexLo).mult(time-timeLo).exp());
}
final RandomVariable shortRate = getShortRate(process, timeIndex);
final double A = getA(process, time, maturity);
final double B = getB(time, maturity);
return shortRate.mult(-B).exp().mult(A);
}
/**
* This is the shift alpha of the process, which essentially represents
* the integrated drift of the short rate (without the interest rate curve related part).
*
* @param timeIndex Time index associated with the time discretization obtained from getProcess
* @return The integrated drift (integrating from 0 to getTime(timeIndex)).
*/
private double getIntegratedDriftAdjustment(final MonteCarloProcess process, final int timeIndex) {
double integratedDriftAdjustment = 0;
for(int i=1; i<=timeIndex; i++) {
final double t = process.getTime(i-1);
final double t2 = process.getTime(i);
int timeIndexVolatilityModel = volatilityModel.getTimeDiscretization().getTimeIndex(t);
if(timeIndexVolatilityModel < 0)
{
timeIndexVolatilityModel = -timeIndexVolatilityModel-2; // Get timeIndex corresponding to previous point
}
final double meanReversion = volatilityModel.getMeanReversion(timeIndexVolatilityModel).doubleValue();
integratedDriftAdjustment += getShortRateConditionalVariance(0, t) * getB(t,t2)/(t2-t) * (t2-t) - integratedDriftAdjustment * meanReversion * (t2-t) * getB(t,t2)/(t2-t);
}
return integratedDriftAdjustment;
}
/**
* Returns A(t,T) where
* \( A(t,T) = P(T)/P(t) \cdot exp(B(t,T) \cdot f(0,t) - \frac{1}{2} \phi(0,t) * B(t,T)^{2} ) \)
* and
* \( \phi(t,T) \) is the value calculated from integrating \( ( \sigma(s) exp(-\int_{s}^{T} a(\tau) \mathrm{d}\tau ) )^{2} \) with respect to s from t to T
* in getShortRateConditionalVariance
.
*
* @param time The parameter t.
* @param maturity The parameter T.
* @return The value A(t,T).
*/
private double getA(final MonteCarloProcess process, final double time, final double maturity) {
final int timeIndex = process.getTimeIndex(time);
final double timeStep = process.getTimeDiscretization().getTimeStep(timeIndex);
final double dt = timeStep;
final double zeroRate = -Math.log(discountCurveFromForwardCurve.getDiscountFactor(time+dt)/discountCurveFromForwardCurve.getDiscountFactor(time)) / dt;
final double B = getB(time,maturity);
final double lnA = Math.log(discountCurveFromForwardCurve.getDiscountFactor(maturity)/discountCurveFromForwardCurve.getDiscountFactor(time))
+ B * zeroRate - 0.5 * getShortRateConditionalVariance(0,time) * B * B;
return Math.exp(lnA);
}
/**
* Calculates \( \int_{t}^{T} a(s) \mathrm{d}s \), where \( a \) is the mean reversion parameter.
*
* @param time The parameter t.
* @param maturity The parameter T.
* @return The value of \( \int_{t}^{T} a(s) \mathrm{d}s \).
*/
private double getMRTime(final double time, final double maturity) {
int timeIndexStart = volatilityModel.getTimeDiscretization().getTimeIndex(time);
if(timeIndexStart < 0)
{
timeIndexStart = -timeIndexStart-1; // Get timeIndex corresponding to next point
}
int timeIndexEnd =volatilityModel.getTimeDiscretization().getTimeIndex(maturity);
if(timeIndexEnd < 0)
{
timeIndexEnd = -timeIndexEnd-2; // Get timeIndex corresponding to previous point
}
double integral = 0.0;
double timePrev = time;
double timeNext;
for(int timeIndex=timeIndexStart+1; timeIndex<=timeIndexEnd; timeIndex++) {
timeNext = volatilityModel.getTimeDiscretization().getTime(timeIndex);
final double meanReversion = volatilityModel.getMeanReversion(timeIndex-1).doubleValue();
integral += meanReversion*(timeNext-timePrev);
timePrev = timeNext;
}
timeNext = maturity;
final double meanReversion = volatilityModel.getMeanReversion(timeIndexEnd).doubleValue();
integral += meanReversion*(timeNext-timePrev);
return integral;
}
/**
* Calculates \( B(t,T) = \int_{t}^{T} \exp(-\int_{s}^{T} a(\tau) \mathrm{d}\tau) \mathrm{d}s \), where a is the mean reversion parameter.
* For a constant \( a \) this results in \( \frac{1-\exp(-a (T-t)}{a} \), but the method also supports piecewise constant \( a \)'s.
*
* @param time The parameter t.
* @param maturity The parameter T.
* @return The value of B(t,T).
*/
private double getB(final double time, final double maturity) {
int timeIndexStart = volatilityModel.getTimeDiscretization().getTimeIndex(time);
if(timeIndexStart < 0)
{
timeIndexStart = -timeIndexStart-1; // Get timeIndex corresponding to next point
}
int timeIndexEnd =volatilityModel.getTimeDiscretization().getTimeIndex(maturity);
if(timeIndexEnd < 0)
{
timeIndexEnd = -timeIndexEnd-2; // Get timeIndex corresponding to previous point
}
double integral = 0.0;
double timePrev = time;
double timeNext;
for(int timeIndex=timeIndexStart+1; timeIndex<=timeIndexEnd; timeIndex++) {
timeNext = volatilityModel.getTimeDiscretization().getTime(timeIndex);
final double meanReversion = volatilityModel.getMeanReversion(timeIndex-1).doubleValue();
integral += (Math.exp(-getMRTime(timeNext,maturity)) - Math.exp(-getMRTime(timePrev,maturity)))/meanReversion;
timePrev = timeNext;
}
final double meanReversion = volatilityModel.getMeanReversion(timeIndexEnd).doubleValue();
timeNext = maturity;
integral += (Math.exp(-getMRTime(timeNext,maturity)) - Math.exp(-getMRTime(timePrev,maturity)))/meanReversion;
return integral;
}
/**
* Calculates the drift adjustment for the log numeraire, that is
* \(
* \int_{t}^{T} \sigma^{2}(s) B(s,T)^{2} \mathrm{d}s
* \) where \( B(t,T) = \int_{t}^{T} \exp(-\int_{s}^{T} a(\tau) \mathrm{d}\tau) \mathrm{d}s \).
*
* @param time The parameter t in \( \int_{t}^{T} \sigma^{2}(s) B(s,T)^{2} \mathrm{d}s \)
* @param maturity The parameter T in \( \int_{t}^{T} \sigma^{2}(s) B(s,T)^{2} \mathrm{d}s \)
* @return The integral \( \int_{t}^{T} \sigma^{2}(s) B(s,T)^{2} \mathrm{d}s \).
*/
private double getV(final double time, final double maturity) {
if(time==maturity) {
return 0;
}
int timeIndexStart = volatilityModel.getTimeDiscretization().getTimeIndex(time);
if(timeIndexStart < 0)
{
timeIndexStart = -timeIndexStart-1; // Get timeIndex corresponding to next point
}
int timeIndexEnd =volatilityModel.getTimeDiscretization().getTimeIndex(maturity);
if(timeIndexEnd < 0)
{
timeIndexEnd = -timeIndexEnd-2; // Get timeIndex corresponding to previous point
}
double integral = 0.0;
double timePrev = time;
double timeNext;
for(int timeIndex=timeIndexStart+1; timeIndex<=timeIndexEnd; timeIndex++) {
timeNext = volatilityModel.getTimeDiscretization().getTime(timeIndex);
final double meanReversion = volatilityModel.getMeanReversion(timeIndex-1).doubleValue();
final double volatility = volatilityModel.getVolatility(timeIndex-1).doubleValue();
integral += volatility * volatility * (timeNext-timePrev)/(meanReversion*meanReversion);
integral -= volatility * volatility * 2 * (Math.exp(- getMRTime(timeNext,maturity))-Math.exp(- getMRTime(timePrev,maturity))) / (meanReversion*meanReversion*meanReversion);
integral += volatility * volatility * (Math.exp(- 2 * getMRTime(timeNext,maturity))-Math.exp(- 2 * getMRTime(timePrev,maturity))) / (2 * meanReversion*meanReversion*meanReversion);
timePrev = timeNext;
}
timeNext = maturity;
final double meanReversion = volatilityModel.getMeanReversion(timeIndexEnd).doubleValue();
final double volatility = volatilityModel.getVolatility(timeIndexEnd).doubleValue();
integral += volatility * volatility * (timeNext-timePrev)/(meanReversion*meanReversion);
integral -= volatility * volatility * 2 * (Math.exp(- getMRTime(timeNext,maturity))-Math.exp(- getMRTime(timePrev,maturity))) / (meanReversion*meanReversion*meanReversion);
integral += volatility * volatility * (Math.exp(- 2 * getMRTime(timeNext,maturity))-Math.exp(- 2 * getMRTime(timePrev,maturity))) / (2 * meanReversion*meanReversion*meanReversion);
return integral;
}
private double getDV(final double time, final double maturity) {
if(time==maturity) {
return 0;
}
int timeIndexStart = volatilityModel.getTimeDiscretization().getTimeIndex(time);
if(timeIndexStart < 0)
{
timeIndexStart = -timeIndexStart-1; // Get timeIndex corresponding to next point
}
int timeIndexEnd =volatilityModel.getTimeDiscretization().getTimeIndex(maturity);
if(timeIndexEnd < 0)
{
timeIndexEnd = -timeIndexEnd-2; // Get timeIndex corresponding to previous point
}
double integral = 0.0;
double timePrev = time;
double timeNext;
for(int timeIndex=timeIndexStart+1; timeIndex<=timeIndexEnd; timeIndex++) {
timeNext = volatilityModel.getTimeDiscretization().getTime(timeIndex);
final double meanReversion = volatilityModel.getMeanReversion(timeIndex-1).doubleValue();
final double volatility = volatilityModel.getVolatility(timeIndex-1).doubleValue();
integral += volatility * volatility * (Math.exp(- getMRTime(timeNext,maturity))-Math.exp(- getMRTime(timePrev,maturity))) / (meanReversion*meanReversion);
integral -= volatility * volatility * (Math.exp(- 2 * getMRTime(timeNext,maturity))-Math.exp(- 2 * getMRTime(timePrev,maturity))) / (2 * meanReversion*meanReversion);
timePrev = timeNext;
}
timeNext = maturity;
final double meanReversion = volatilityModel.getMeanReversion(timeIndexEnd).doubleValue();
final double volatility = volatilityModel.getVolatility(timeIndexEnd).doubleValue();
integral += volatility * volatility * (Math.exp(- getMRTime(timeNext,maturity))-Math.exp(- getMRTime(timePrev,maturity))) / (meanReversion*meanReversion);
integral -= volatility * volatility * (Math.exp(- 2 * getMRTime(timeNext,maturity))-Math.exp(- 2 * getMRTime(timePrev,maturity))) / (2 * meanReversion*meanReversion);
return integral;
}
/**
* Calculates the variance \( \mathop{Var}(r(t) \vert r(s) ) \), that is
* \(
* \int_{s}^{t} \sigma^{2}(\tau) \exp(-2 \cdot \int_{\tau}^{t} a(u) \mathrm{d}u ) \ \mathrm{d}\tau
* \) where \( a \) is the meanReversion and \( \sigma \) is the short rate instantaneous volatility.
*
* @param time The parameter s in \( \int_{s}^{t} \sigma^{2}(\tau) \exp(-2 \cdot \int_{\tau}^{t} a(u) \mathrm{d}u ) \ \mathrm{d}\tau \)
* @param maturity The parameter t in \( \int_{s}^{t} \sigma^{2}(\tau) \exp(-2 \cdot \int_{\tau}^{t} a(u) \mathrm{d}u ) \ \mathrm{d}\tau \)
* @return The conditional variance of the short rate, \( \mathop{Var}(r(t) \vert r(s) ) \).
*/
public double getShortRateConditionalVariance(final double time, final double maturity) {
int timeIndexStart = volatilityModel.getTimeDiscretization().getTimeIndex(time);
if(timeIndexStart < 0)
{
timeIndexStart = -timeIndexStart-1; // Get timeIndex corresponding to next point
}
int timeIndexEnd =volatilityModel.getTimeDiscretization().getTimeIndex(maturity);
if(timeIndexEnd < 0)
{
timeIndexEnd = -timeIndexEnd-2; // Get timeIndex corresponding to previous point
}
double integral = 0.0;
double timePrev = time;
double timeNext;
for(int timeIndex=timeIndexStart+1; timeIndex<=timeIndexEnd; timeIndex++) {
timeNext = volatilityModel.getTimeDiscretization().getTime(timeIndex);
final double meanReversion = volatilityModel.getMeanReversion(timeIndex-1).doubleValue();
final double volatility = volatilityModel.getVolatility(timeIndex-1).doubleValue();
integral += volatility * volatility * (Math.exp(-2 * getMRTime(timeNext,maturity))-Math.exp(-2 * getMRTime(timePrev,maturity))) / (2*meanReversion);
timePrev = timeNext;
}
timeNext = maturity;
final double meanReversion = volatilityModel.getMeanReversion(timeIndexEnd).doubleValue();
final double volatility = volatilityModel.getVolatility(timeIndexEnd).doubleValue();
integral += volatility * volatility * (Math.exp(-2 * getMRTime(timeNext,maturity))-Math.exp(-2 * getMRTime(timePrev,maturity))) / (2*meanReversion);
return integral;
}
public double getIntegratedBondSquaredVolatility(final double time, final double maturity) {
return getShortRateConditionalVariance(0, time) * getB(time,maturity) * getB(time,maturity);
}
@Override
public Map getModelParameters() {
// TODO Add implementation
throw new UnsupportedOperationException();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy