All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.montecarlo.interestrate.models.HullWhiteModelWithShiftExtension Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 09.02.2004
 */
package net.finmath.montecarlo.interestrate.models;

import java.time.LocalDateTime;
import java.time.LocalTime;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

import net.finmath.exception.CalculationException;
import net.finmath.marketdata.model.AnalyticModel;
import net.finmath.marketdata.model.curves.DiscountCurve;
import net.finmath.marketdata.model.curves.DiscountCurveFromForwardCurve;
import net.finmath.marketdata.model.curves.ForwardCurve;
import net.finmath.montecarlo.RandomVariableFactory;
import net.finmath.montecarlo.RandomVariableFromArrayFactory;
import net.finmath.montecarlo.interestrate.LIBORMarketModel;
import net.finmath.montecarlo.interestrate.LIBORModel;
import net.finmath.montecarlo.interestrate.models.covariance.ShortRateVolatilityModel;
import net.finmath.montecarlo.model.AbstractProcessModel;
import net.finmath.montecarlo.process.MonteCarloProcess;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;

/**
 * Implements a Hull-White model with time dependent mean reversion speed and time dependent short rate volatility.
 *
 * 
 * Note: This implementation is for illustrative purposes.
 * For a numerically equivalent, more efficient implementation see {@link net.finmath.montecarlo.interestrate.models.HullWhiteModel}.
 * Please use {@link net.finmath.montecarlo.interestrate.models.HullWhiteModel} for real applications.
 * 
 *
 * 

* Model Dynamics *

* * The Hull-While model assumes the following dynamic for the short rate: * \[ d r(t) = ( \theta(t) - a(t) r(t) ) d t + \sigma(t) d W(t) \text{,} \quad r(t_{0}) = r_{0} \text{,} \] * where the function \( \theta \) determines the calibration to the initial forward curve, * \( a \) is the mean reversion and \( \sigma \) is the instantaneous volatility. * * The dynamic above is under the equivalent martingale measure corresponding to the numeraire * \[ N(t) = \exp\left( \int_0^t r(\tau) \mathrm{d}\tau \right) \text{.} \] * * The main task of this class is to provide the risk-neutral drift and the volatility to the numerical scheme (given the volatility model), simulating * \( r(t_{i}) \). The class then also provides and the corresponding numeraire and forward rates (LIBORs). * *

* Time Discrete Model *

* * Assuming piecewise constant coefficients (mean reversion speed \( a \) and short * rate volatility \( \sigma \) the class specifies the drift and factor loadings as * piecewise constant functions for an Euler-scheme. * The class provides the exact Euler step for the short rate r. * * More specifically (assuming a constant mean reversion speed \( a \) for a moment), considering * \[ \Delta \bar{r}(t_{i}) = \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} d r(t) \] * we find from * \[ \exp(-a t) \ \left( \mathrm{d} \left( \exp(a t) r(t) \right) \right) \ = \ a r(t) + \mathrm{d} r(t) \ = \ \theta(t) \mathrm{d}t + \sigma(t) \mathrm{d}W(t) \] * that * \[ \exp(a t_{i+1}) r(t_{i+1}) - \exp(a t_{i}) r(t_{i}) \ = \ \int_{t_{i}}^{t_{i+1}} \left[ \exp(a t) \theta(t) \mathrm{d}t + \exp(a t) \sigma(t) \mathrm{d}W(t) \right] \] * that is * \[ r(t_{i+1}) - r(t_{i}) \ = \ -(1-\exp(-a (t_{i+1}-t_{i})) r(t_{i}) + \int_{t_{i}}^{t_{i+1}} \left[ \exp(-a (t_{i+1}-t)) \theta(t) \mathrm{d}t + \exp(-a (t_{i+1}-t)) \sigma(t) \mathrm{d}W(t) \right] \] * * Assuming piecewise constant \( \sigma \) and \( \theta \), being constant over \( (t_{i},t_{i}+\Delta t_{i}) \), we thus find * \[ r(t_{i+1}) - r(t_{i}) \ = \ \frac{1-\exp(-a \Delta t_{i})}{a \Delta t_{i}} \left( ( \theta(t_{i}) - a \bar{r}(t_{i})) \Delta t_{i} \right) + \sqrt{\frac{1-\exp(-2 a \Delta t_{i})}{2 a \Delta t_{i}}} \sigma(t_{i}) \Delta W(t_{i}) \] . * * In other words, the Euler scheme is exact if the mean reversion \( a \) is replaced by the effective mean reversion * \( \frac{1-\exp(-a \Delta t_{i})}{a \Delta t_{i}} a \) and the volatility is replaced by the * effective volatility \( \sqrt{\frac{1-\exp(-2 a \Delta t_{i})}{2 a \Delta t_{i}}} \sigma(t_{i}) \). * * In the calculations above the mean reversion speed is treated as a constants, but it is straight * forward to see that the same holds for piecewise constant mean reversion speeds, replacing * the expression \( a \ t \) by \( \int_{0}^t a(s) \mathrm{d}s \). * *

* Calibration *

* * The drift of the short rate is calibrated to the given forward curve using * \[ \theta(t) = \frac{\partial}{\partial T} f(0,t) + a(t) f(0,t) + \phi(t) \text{,} \] * where the function \( f \) denotes the instantanenous forward rate and * \( \phi(t) = \frac{1}{2} a \sigma^{2}(t) B(t)^{2} + \sigma^{2}(t) B(t) \frac{\partial}{\partial t} B(t) \) with \( B(t) = \frac{1-\exp(-a t)}{a} \). * *

* Volatility Model *

* * The Hull-White model is essentially equivalent to LIBOR Market Model where the forward rate normal volatility \( \sigma(t,T) \) is * given by * \[ \sigma(t,T_{i}) \ = \ (1 + L_{i}(t) (T_{i+1}-T_{i})) \sigma(t) \exp(-a (T_{i}-t)) \frac{1-\exp(-a (T_{i+1}-T_{i}))}{a (T_{i+1}-T_{i})} \] * (where \( \{ T_{i} \} \) is the forward rates tenor time discretization (note that this is the normal volatility, not the log-normal volatility). * Hence, we interpret both, short rate mean reversion speed and short rate volatility as part of the volatility model. * * The mean reversion speed and the short rate volatility have to be provided to this class via an object implementing * {@link net.finmath.montecarlo.interestrate.models.covariance.ShortRateVolatilityModel}. * * * @see net.finmath.montecarlo.interestrate.models.covariance.ShortRateVolatilityModel * @see net.finmath.montecarlo.interestrate.models.HullWhiteModel * * @author Christian Fries * @version 1.2 */ public class HullWhiteModelWithShiftExtension extends AbstractProcessModel implements LIBORModel { private enum DriftFormula { ANALYTIC, DISCRETE } private final DriftFormula driftFormula; private final TimeDiscretization liborPeriodDiscretization; private String forwardCurveName; private final AnalyticModel analyticModel; private final ForwardCurve forwardRateCurve; private final DiscountCurve discountCurve; private final DiscountCurve discountCurveFromForwardCurve; private final RandomVariableFactory randomVariableFactory = new RandomVariableFromArrayFactory(); // Cache for the numeraires, needs to be invalidated if process changes private final ConcurrentHashMap numeraires; private MonteCarloProcess numerairesProcess = null; private final ShortRateVolatilityModel volatilityModel; /** * Creates a Hull-White model which implements LIBORMarketModel. * * @param liborPeriodDiscretization The forward rate discretization to be used in the getLIBOR method. * @param analyticModel The analytic model to be used (currently not used, may be null). * @param forwardRateCurve The forward curve to be used (currently not used, - the model uses disocuntCurve only. * @param discountCurve The disocuntCurve (currently also used to determine the forward curve). * @param volatilityModel The volatility model specifying mean reversion and instantaneous volatility of the short rate. * @param properties A map specifying model properties (currently not used, may be null). */ public HullWhiteModelWithShiftExtension( final TimeDiscretization liborPeriodDiscretization, final AnalyticModel analyticModel, final ForwardCurve forwardRateCurve, final DiscountCurve discountCurve, final ShortRateVolatilityModel volatilityModel, final Map properties ) { this.liborPeriodDiscretization = liborPeriodDiscretization; this.analyticModel = analyticModel; this.forwardRateCurve = forwardRateCurve; this.discountCurve = discountCurve; this.volatilityModel = volatilityModel; discountCurveFromForwardCurve = new DiscountCurveFromForwardCurve(forwardRateCurve); numeraires = new ConcurrentHashMap<>(); if(properties != null && properties.containsKey("driftFormula")) { driftFormula = DriftFormula.valueOf((String)properties.get("driftFormula")); } else { driftFormula = DriftFormula.DISCRETE; } } @Override public LocalDateTime getReferenceDate() { return LocalDateTime.of(discountCurve.getReferenceDate(), LocalTime.of(0, 0)); } @Override public int getNumberOfComponents() { return 1; } @Override public int getNumberOfFactors() { return 1; } @Override public RandomVariable applyStateSpaceTransform(final MonteCarloProcess process, final int timeIndex, final int componentIndex, final RandomVariable randomVariable) { return randomVariable; } @Override public RandomVariable applyStateSpaceTransformInverse(final MonteCarloProcess process, final int timeIndex, final int componentIndex, final RandomVariable randomVariable) { return randomVariable; } @Override public RandomVariable[] getInitialState(MonteCarloProcess process) { // Initial value is zero - BrownianMotion serves as a factory here. final RandomVariable zero = getRandomVariableForConstant(0.0); return new RandomVariable[] { zero }; } @Override public RandomVariable getNumeraire(MonteCarloProcess process, final double time) throws CalculationException { if(time < 0) { return randomVariableFactory.createRandomVariable(discountCurve.getDiscountFactor(analyticModel, time)); } if(time == process.getTime(0)) { // Initial value of numeraire is one - BrownianMotion serves as a factory here. final RandomVariable one = randomVariableFactory.createRandomVariable(1.0); return one; } final int timeIndex = process.getTimeIndex(time); if(timeIndex < 0) { /* * time is not part of the time discretization. */ // Find the time index prior to the current time (note: if time does not match a discretization point, we get a negative value, such that -index is next point). int previousTimeIndex = process.getTimeIndex(time); if(previousTimeIndex < 0) { previousTimeIndex = -previousTimeIndex-1; } previousTimeIndex--; final double previousTime = process.getTime(previousTimeIndex); // Get value of short rate for period from previousTime to time. final RandomVariable rate = getShortRate(process, previousTimeIndex); // Piecewise constant rate for the increment final RandomVariable integratedRate = rate.mult(time-previousTime); return getNumeraire(process, previousTime).mult(integratedRate.exp()); } /* * Check if numeraire cache is values (i.e. process did not change) */ if(process != numerairesProcess) { numeraires.clear(); numerairesProcess = process; } /* * Check if numeraire is part of the cache */ RandomVariable numeraire = numeraires.get(timeIndex); if(numeraire == null) { /* * Calculate the numeraire for timeIndex */ final RandomVariable zero = process.getStochasticDriver().getRandomVariableForConstant(0.0); RandomVariable integratedRate = zero; // Add r(t_{i}) (t_{i+1}-t_{i}) for i = 0 to previousTimeIndex-1 for(int i=0; i dataModified) { throw new UnsupportedOperationException(); } private RandomVariable getShortRate(final MonteCarloProcess process, final int timeIndex) throws CalculationException { final double time = process.getTime(timeIndex); RandomVariable value = process.getProcessValue(timeIndex, 0); final double dt = process.getTimeDiscretization().getTimeStep(timeIndex); final double zeroRate = -Math.log(discountCurveFromForwardCurve.getDiscountFactor(time+dt)/discountCurveFromForwardCurve.getDiscountFactor(time)) / dt; double alpha = zeroRate; /* * One may try different drifts here. The value * getDV(0,time) * would correspond to the analytic value (for dt -> 0). The value * getIntegratedDriftAdjustment(timeIndex) * is the correct one given the discretized numeraire. */ if(driftFormula == DriftFormula.DISCRETE) { alpha += getIntegratedDriftAdjustment(process, timeIndex); } else if(driftFormula == DriftFormula.ANALYTIC) { alpha += getDV(0,time); } value = value.add(alpha); return value; } private RandomVariable getZeroCouponBond(final MonteCarloProcess process, final double time, final double maturity) throws CalculationException { final int timeIndex = process.getTimeIndex(time); if(timeIndex < 0) { final int timeIndexLo = -timeIndex-1-1; final double timeLo = process.getTime(timeIndexLo); return getZeroCouponBond(process, timeLo, maturity).mult(getShortRate(process, timeIndexLo).mult(time-timeLo).exp()); } final RandomVariable shortRate = getShortRate(process, timeIndex); final double A = getA(process, time, maturity); final double B = getB(time, maturity); return shortRate.mult(-B).exp().mult(A); } /** * This is the shift alpha of the process, which essentially represents * the integrated drift of the short rate (without the interest rate curve related part). * * @param timeIndex Time index associated with the time discretization obtained from getProcess * @return The integrated drift (integrating from 0 to getTime(timeIndex)). */ private double getIntegratedDriftAdjustment(final MonteCarloProcess process, final int timeIndex) { double integratedDriftAdjustment = 0; for(int i=1; i<=timeIndex; i++) { final double t = process.getTime(i-1); final double t2 = process.getTime(i); int timeIndexVolatilityModel = volatilityModel.getTimeDiscretization().getTimeIndex(t); if(timeIndexVolatilityModel < 0) { timeIndexVolatilityModel = -timeIndexVolatilityModel-2; // Get timeIndex corresponding to previous point } final double meanReversion = volatilityModel.getMeanReversion(timeIndexVolatilityModel).doubleValue(); integratedDriftAdjustment += getShortRateConditionalVariance(0, t) * getB(t,t2)/(t2-t) * (t2-t) - integratedDriftAdjustment * meanReversion * (t2-t) * getB(t,t2)/(t2-t); } return integratedDriftAdjustment; } /** * Returns A(t,T) where * \( A(t,T) = P(T)/P(t) \cdot exp(B(t,T) \cdot f(0,t) - \frac{1}{2} \phi(0,t) * B(t,T)^{2} ) \) * and * \( \phi(t,T) \) is the value calculated from integrating \( ( \sigma(s) exp(-\int_{s}^{T} a(\tau) \mathrm{d}\tau ) )^{2} \) with respect to s from t to T * in getShortRateConditionalVariance. * * @param time The parameter t. * @param maturity The parameter T. * @return The value A(t,T). */ private double getA(final MonteCarloProcess process, final double time, final double maturity) { final int timeIndex = process.getTimeIndex(time); final double timeStep = process.getTimeDiscretization().getTimeStep(timeIndex); final double dt = timeStep; final double zeroRate = -Math.log(discountCurveFromForwardCurve.getDiscountFactor(time+dt)/discountCurveFromForwardCurve.getDiscountFactor(time)) / dt; final double B = getB(time,maturity); final double lnA = Math.log(discountCurveFromForwardCurve.getDiscountFactor(maturity)/discountCurveFromForwardCurve.getDiscountFactor(time)) + B * zeroRate - 0.5 * getShortRateConditionalVariance(0,time) * B * B; return Math.exp(lnA); } /** * Calculates \( \int_{t}^{T} a(s) \mathrm{d}s \), where \( a \) is the mean reversion parameter. * * @param time The parameter t. * @param maturity The parameter T. * @return The value of \( \int_{t}^{T} a(s) \mathrm{d}s \). */ private double getMRTime(final double time, final double maturity) { int timeIndexStart = volatilityModel.getTimeDiscretization().getTimeIndex(time); if(timeIndexStart < 0) { timeIndexStart = -timeIndexStart-1; // Get timeIndex corresponding to next point } int timeIndexEnd =volatilityModel.getTimeDiscretization().getTimeIndex(maturity); if(timeIndexEnd < 0) { timeIndexEnd = -timeIndexEnd-2; // Get timeIndex corresponding to previous point } double integral = 0.0; double timePrev = time; double timeNext; for(int timeIndex=timeIndexStart+1; timeIndex<=timeIndexEnd; timeIndex++) { timeNext = volatilityModel.getTimeDiscretization().getTime(timeIndex); final double meanReversion = volatilityModel.getMeanReversion(timeIndex-1).doubleValue(); integral += meanReversion*(timeNext-timePrev); timePrev = timeNext; } timeNext = maturity; final double meanReversion = volatilityModel.getMeanReversion(timeIndexEnd).doubleValue(); integral += meanReversion*(timeNext-timePrev); return integral; } /** * Calculates \( B(t,T) = \int_{t}^{T} \exp(-\int_{s}^{T} a(\tau) \mathrm{d}\tau) \mathrm{d}s \), where a is the mean reversion parameter. * For a constant \( a \) this results in \( \frac{1-\exp(-a (T-t)}{a} \), but the method also supports piecewise constant \( a \)'s. * * @param time The parameter t. * @param maturity The parameter T. * @return The value of B(t,T). */ private double getB(final double time, final double maturity) { int timeIndexStart = volatilityModel.getTimeDiscretization().getTimeIndex(time); if(timeIndexStart < 0) { timeIndexStart = -timeIndexStart-1; // Get timeIndex corresponding to next point } int timeIndexEnd =volatilityModel.getTimeDiscretization().getTimeIndex(maturity); if(timeIndexEnd < 0) { timeIndexEnd = -timeIndexEnd-2; // Get timeIndex corresponding to previous point } double integral = 0.0; double timePrev = time; double timeNext; for(int timeIndex=timeIndexStart+1; timeIndex<=timeIndexEnd; timeIndex++) { timeNext = volatilityModel.getTimeDiscretization().getTime(timeIndex); final double meanReversion = volatilityModel.getMeanReversion(timeIndex-1).doubleValue(); integral += (Math.exp(-getMRTime(timeNext,maturity)) - Math.exp(-getMRTime(timePrev,maturity)))/meanReversion; timePrev = timeNext; } final double meanReversion = volatilityModel.getMeanReversion(timeIndexEnd).doubleValue(); timeNext = maturity; integral += (Math.exp(-getMRTime(timeNext,maturity)) - Math.exp(-getMRTime(timePrev,maturity)))/meanReversion; return integral; } /** * Calculates the drift adjustment for the log numeraire, that is * \( * \int_{t}^{T} \sigma^{2}(s) B(s,T)^{2} \mathrm{d}s * \) where \( B(t,T) = \int_{t}^{T} \exp(-\int_{s}^{T} a(\tau) \mathrm{d}\tau) \mathrm{d}s \). * * @param time The parameter t in \( \int_{t}^{T} \sigma^{2}(s) B(s,T)^{2} \mathrm{d}s \) * @param maturity The parameter T in \( \int_{t}^{T} \sigma^{2}(s) B(s,T)^{2} \mathrm{d}s \) * @return The integral \( \int_{t}^{T} \sigma^{2}(s) B(s,T)^{2} \mathrm{d}s \). */ private double getV(final double time, final double maturity) { if(time==maturity) { return 0; } int timeIndexStart = volatilityModel.getTimeDiscretization().getTimeIndex(time); if(timeIndexStart < 0) { timeIndexStart = -timeIndexStart-1; // Get timeIndex corresponding to next point } int timeIndexEnd =volatilityModel.getTimeDiscretization().getTimeIndex(maturity); if(timeIndexEnd < 0) { timeIndexEnd = -timeIndexEnd-2; // Get timeIndex corresponding to previous point } double integral = 0.0; double timePrev = time; double timeNext; for(int timeIndex=timeIndexStart+1; timeIndex<=timeIndexEnd; timeIndex++) { timeNext = volatilityModel.getTimeDiscretization().getTime(timeIndex); final double meanReversion = volatilityModel.getMeanReversion(timeIndex-1).doubleValue(); final double volatility = volatilityModel.getVolatility(timeIndex-1).doubleValue(); integral += volatility * volatility * (timeNext-timePrev)/(meanReversion*meanReversion); integral -= volatility * volatility * 2 * (Math.exp(- getMRTime(timeNext,maturity))-Math.exp(- getMRTime(timePrev,maturity))) / (meanReversion*meanReversion*meanReversion); integral += volatility * volatility * (Math.exp(- 2 * getMRTime(timeNext,maturity))-Math.exp(- 2 * getMRTime(timePrev,maturity))) / (2 * meanReversion*meanReversion*meanReversion); timePrev = timeNext; } timeNext = maturity; final double meanReversion = volatilityModel.getMeanReversion(timeIndexEnd).doubleValue(); final double volatility = volatilityModel.getVolatility(timeIndexEnd).doubleValue(); integral += volatility * volatility * (timeNext-timePrev)/(meanReversion*meanReversion); integral -= volatility * volatility * 2 * (Math.exp(- getMRTime(timeNext,maturity))-Math.exp(- getMRTime(timePrev,maturity))) / (meanReversion*meanReversion*meanReversion); integral += volatility * volatility * (Math.exp(- 2 * getMRTime(timeNext,maturity))-Math.exp(- 2 * getMRTime(timePrev,maturity))) / (2 * meanReversion*meanReversion*meanReversion); return integral; } private double getDV(final double time, final double maturity) { if(time==maturity) { return 0; } int timeIndexStart = volatilityModel.getTimeDiscretization().getTimeIndex(time); if(timeIndexStart < 0) { timeIndexStart = -timeIndexStart-1; // Get timeIndex corresponding to next point } int timeIndexEnd =volatilityModel.getTimeDiscretization().getTimeIndex(maturity); if(timeIndexEnd < 0) { timeIndexEnd = -timeIndexEnd-2; // Get timeIndex corresponding to previous point } double integral = 0.0; double timePrev = time; double timeNext; for(int timeIndex=timeIndexStart+1; timeIndex<=timeIndexEnd; timeIndex++) { timeNext = volatilityModel.getTimeDiscretization().getTime(timeIndex); final double meanReversion = volatilityModel.getMeanReversion(timeIndex-1).doubleValue(); final double volatility = volatilityModel.getVolatility(timeIndex-1).doubleValue(); integral += volatility * volatility * (Math.exp(- getMRTime(timeNext,maturity))-Math.exp(- getMRTime(timePrev,maturity))) / (meanReversion*meanReversion); integral -= volatility * volatility * (Math.exp(- 2 * getMRTime(timeNext,maturity))-Math.exp(- 2 * getMRTime(timePrev,maturity))) / (2 * meanReversion*meanReversion); timePrev = timeNext; } timeNext = maturity; final double meanReversion = volatilityModel.getMeanReversion(timeIndexEnd).doubleValue(); final double volatility = volatilityModel.getVolatility(timeIndexEnd).doubleValue(); integral += volatility * volatility * (Math.exp(- getMRTime(timeNext,maturity))-Math.exp(- getMRTime(timePrev,maturity))) / (meanReversion*meanReversion); integral -= volatility * volatility * (Math.exp(- 2 * getMRTime(timeNext,maturity))-Math.exp(- 2 * getMRTime(timePrev,maturity))) / (2 * meanReversion*meanReversion); return integral; } /** * Calculates the variance \( \mathop{Var}(r(t) \vert r(s) ) \), that is * \( * \int_{s}^{t} \sigma^{2}(\tau) \exp(-2 \cdot \int_{\tau}^{t} a(u) \mathrm{d}u ) \ \mathrm{d}\tau * \) where \( a \) is the meanReversion and \( \sigma \) is the short rate instantaneous volatility. * * @param time The parameter s in \( \int_{s}^{t} \sigma^{2}(\tau) \exp(-2 \cdot \int_{\tau}^{t} a(u) \mathrm{d}u ) \ \mathrm{d}\tau \) * @param maturity The parameter t in \( \int_{s}^{t} \sigma^{2}(\tau) \exp(-2 \cdot \int_{\tau}^{t} a(u) \mathrm{d}u ) \ \mathrm{d}\tau \) * @return The conditional variance of the short rate, \( \mathop{Var}(r(t) \vert r(s) ) \). */ public double getShortRateConditionalVariance(final double time, final double maturity) { int timeIndexStart = volatilityModel.getTimeDiscretization().getTimeIndex(time); if(timeIndexStart < 0) { timeIndexStart = -timeIndexStart-1; // Get timeIndex corresponding to next point } int timeIndexEnd =volatilityModel.getTimeDiscretization().getTimeIndex(maturity); if(timeIndexEnd < 0) { timeIndexEnd = -timeIndexEnd-2; // Get timeIndex corresponding to previous point } double integral = 0.0; double timePrev = time; double timeNext; for(int timeIndex=timeIndexStart+1; timeIndex<=timeIndexEnd; timeIndex++) { timeNext = volatilityModel.getTimeDiscretization().getTime(timeIndex); final double meanReversion = volatilityModel.getMeanReversion(timeIndex-1).doubleValue(); final double volatility = volatilityModel.getVolatility(timeIndex-1).doubleValue(); integral += volatility * volatility * (Math.exp(-2 * getMRTime(timeNext,maturity))-Math.exp(-2 * getMRTime(timePrev,maturity))) / (2*meanReversion); timePrev = timeNext; } timeNext = maturity; final double meanReversion = volatilityModel.getMeanReversion(timeIndexEnd).doubleValue(); final double volatility = volatilityModel.getVolatility(timeIndexEnd).doubleValue(); integral += volatility * volatility * (Math.exp(-2 * getMRTime(timeNext,maturity))-Math.exp(-2 * getMRTime(timePrev,maturity))) / (2*meanReversion); return integral; } public double getIntegratedBondSquaredVolatility(final double time, final double maturity) { return getShortRateConditionalVariance(0, time) * getB(time,maturity) * getB(time,maturity); } @Override public Map getModelParameters() { // TODO Add implementation throw new UnsupportedOperationException(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy