net.finmath.montecarlo.interestrate.simple.SimpleLIBORMarketModelWithWMC Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* Created on 09.02.2004
*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*/
package net.finmath.montecarlo.interestrate.simple;
import java.util.Arrays;
import net.finmath.montecarlo.BrownianMotion;
import net.finmath.montecarlo.RandomVariableFromDoubleArray;
import net.finmath.montecarlo.interestrate.models.covariance.LIBORCorrelationModel;
import net.finmath.montecarlo.interestrate.models.covariance.LIBORCovarianceModelFromVolatilityAndCorrelation;
import net.finmath.montecarlo.interestrate.models.covariance.LIBORVolatilityModel;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretizationFromArray;
/**
* Implements a proxy scheme WMC extension of a libor market model.
* This implementation uses zero drift in the proxy scheme (for demonstration).
*
* @author Christian Fries
* @version 1.0
* @date 25.05.2006
* @since finmath-lib 4.1.0
*/
public class SimpleLIBORMarketModelWithWMC extends SimpleLIBORMarketModel {
private RandomVariable[] discreteProcessWeights;
private final SimpleLIBORMarketModel targetScheme;
/**
* @param timeDiscretizationFromArray The time discretization of the process (simulation time).
* @param liborPeriodDiscretization The discretization of the interest rate curve into forward rates (tenor structure).
* @param numberOfPaths The number of paths.
* @param liborInitialValues The initial values for the forward rates.
* @param volatilityModel The volatility model to use.
* @param correlationModel The correlation model to use.
* @param targetScheme The model towards which the Monte-Carlo probabilites should be correted
*/
public SimpleLIBORMarketModelWithWMC(
final TimeDiscretizationFromArray timeDiscretizationFromArray,
final TimeDiscretizationFromArray liborPeriodDiscretization,
final int numberOfPaths,
final double[] liborInitialValues,
final LIBORVolatilityModel volatilityModel,
final LIBORCorrelationModel correlationModel,
final SimpleLIBORMarketModel targetScheme
) {
super( timeDiscretizationFromArray,
liborPeriodDiscretization,
numberOfPaths,
liborInitialValues,
volatilityModel,
correlationModel);
this.targetScheme = targetScheme;
this.setBrownianMotion(targetScheme.getBrownianMotion());
this.setMeasure(targetScheme.getMeasure());
}
/**
* This scheme has zero drift!
*/
@Override
public RandomVariable getDrift(final int timeIndex, final int component, final RandomVariable[] realizationAtTimeIndex, final RandomVariable[] realizationPredictor) {
// if(component == 10) return new RandomVariableFromDoubleArray(getTime(timeIndex), (Math.log(0.3)-Math.log(0.1)) / 5.0, getNumberOfPaths());
// else return super.getDrift(timeIndex, component, realizationAtTimeIndex, realizationPredictor);
// return (new RandomVariableFromDoubleArray(getTime(timeIndex), (Math.log(0.3)-Math.log(0.1)) / 5.0 / this.getFactorLoading(timeIndex, 0, 10).get(0), getNumberOfPaths())).mult(this.getFactorLoading(timeIndex, 0, component)).add(super.getDrift(timeIndex, component, realizationAtTimeIndex, realizationPredictor));
// return (new RandomVariableFromDoubleArray(getTime(timeIndex), 0.0 / this.getFactorLoading(timeIndex, 0, 10).get(0), getNumberOfPaths())).mult(this.getFactorLoading(timeIndex, 0, component)).add(super.getDrift(timeIndex, component, realizationAtTimeIndex, realizationPredictor));
return super.getDrift(timeIndex, component, realizationAtTimeIndex, realizationPredictor);
}
/**
* This method returns the weights of a weighted Monte Carlo method (the
* probability density).
*
* @param timeIndex Time index at which the process should be observed
* @return A vector of positive weights which sums up to one
*/
@Override
public RandomVariable getMonteCarloWeights(final int timeIndex) {
// Christian Fries, 20040930: Note: If volatilty is zero, weighted MC will not work, because no weight can bring a zero probability region to positive probability. On the otherhand there is no drift to correct, if volatility is zero.
// Christian Fries, 20041001: Note: Weighted MC will not work in a low factor model, because then only a low dimensional hyperplane of the state space will have non zero probability weight and it is not possible to leave this plane by weighted MC.
// Christian Fries, 20060524: The remark 20041001 is not precise enough. The weighted MC works, but the two measure are not equivalent.
if (discreteProcessWeights == null || discreteProcessWeights.length == 0) {
// Precalculate the weights
discreteProcessWeights = new RandomVariableFromDoubleArray[this.getTimeDiscretization().getNumberOfTimeSteps()+1];
final double changeOfNumeraire = this.getNumeraire(0).get(0) / targetScheme.getNumeraire(0).get(0);
discreteProcessWeights[0] = new RandomVariableFromDoubleArray(0.0, 1.0 / this.getNumberOfPaths() / changeOfNumeraire);
// Initial value of target scheme is needed as a RandomVariableFromDoubleArray later for the drift
final RandomVariable[] initialValueOfTargetScheme = new RandomVariableFromDoubleArray[this.getNumberOfComponents()];
for (int componentIndex = 0; componentIndex < this.getNumberOfComponents(); componentIndex++) {
initialValueOfTargetScheme[componentIndex] = targetScheme.getInitialValue(componentIndex);
}
// Initial value shift
final RandomVariable[] initialValueLogShifts = new RandomVariable[this.getNumberOfComponents()];
for (int componentIndex = 0; componentIndex < this.getNumberOfComponents(); componentIndex++) {
final RandomVariable initialValueLog = (this.getInitialValue(componentIndex)).log();
final RandomVariable initialValueLogTarget = (targetScheme.getInitialValue(componentIndex)).log();
initialValueLogShifts[componentIndex] = initialValueLogTarget.sub(initialValueLog);
}
// Get the Brownian motion part of this process
final BrownianMotion brownianMotion = this.getBrownianMotion();
// Allocate temp. memory
final double[][] factorDrift = new double[getNumberOfFactors()][getNumberOfPaths()];
for (int timeIndex2 = 1; timeIndex2 < getTimeDiscretization().getNumberOfTimeSteps()+1; timeIndex2++) {
final double deltaT = this.getTime(timeIndex2) - this.getTime(timeIndex2 - 1);
// Allocate memory
final double[] discreteProcessWeightsTimeIndex = new double[this.getNumberOfPaths()];
// Copy previous path probabilities
for (int path = 0; path < getNumberOfPaths(); path++) {
discreteProcessWeightsTimeIndex[path] = discreteProcessWeights[timeIndex2 - 1].get(path);
}
for (int factor = 0; factor < getNumberOfFactors(); factor++) {
// Clear factorDrift
Arrays.fill(factorDrift[factor], 0.0);
}
// Calculate the factor drift
// for (int componentIndex = timeIndex2; componentIndex < this.getNumberOfComponents(); componentIndex++) {
for (int componentIndex = 0; componentIndex < this.getNumberOfComponents(); componentIndex++) {
final RandomVariable initialValueLogShift = (timeIndex2 == 1) ? initialValueLogShifts[componentIndex] : null;
// @bug workaround
// @bug should be target here
final RandomVariable driftProxy = this.getDrift(timeIndex2-1, componentIndex, this.getProcessValue(timeIndex2-1), null);
final RandomVariable driftTarget = targetScheme.getDrift(timeIndex2 - 1, componentIndex, timeIndex2 == 1 ? initialValueOfTargetScheme : this.getProcessValue(timeIndex2-1), this.getProcessValue(timeIndex2));
final double instvol = ((LIBORCovarianceModelFromVolatilityAndCorrelation)getCovarianceModel()).getVolatilityModel().getVolatility(timeIndex2-1, componentIndex).get(0);
if(instvol == 0) {
System.out.println("vol zero");
continue;
}
for (int factor = 0; factor < getNumberOfFactors(); factor++) {
final RandomVariable factorLoadingPseudoInverse = getCovarianceModel().getFactorLoadingPseudoInverse(timeIndex2-1, componentIndex, factor, null);
for (int path = 0; path < getNumberOfPaths(); path++) {
factorDrift[factor][path] += factorLoadingPseudoInverse.get(path) * ((driftTarget.get(path) - driftProxy.get(path)) * deltaT + (initialValueLogShift != null ? initialValueLogShift.get(path) : 0.0));
}
}
}
/*
for (int factor = 0; factor < getNumberOfFactors(); factor++) {
System.out.println(factor + "\t" + factorDrift[factor][0]);
}
*/
// Calculate the transition probabiltiy
for (int factor = 0; factor < getNumberOfFactors(); factor++) {
final RandomVariable brownianIncement = brownianMotion.getBrownianIncrement(timeIndex2 - 1, factor);
for (int path = 0; path < getNumberOfPaths(); path++) {
final double x = brownianIncement.get(path);
final double y = x - factorDrift[factor][path];
final double transitionPobabilityDensityRatio = Math.exp((- y * y + x * x) / (2.0 * deltaT));
discreteProcessWeightsTimeIndex[path] *= transitionPobabilityDensityRatio;
}
}
discreteProcessWeights[timeIndex2] = new RandomVariableFromDoubleArray(getTime(timeIndex2), discreteProcessWeightsTimeIndex);
}
}
// Return value of process
return discreteProcessWeights[timeIndex];
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy