All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.montecarlo.process.EulerSchemeFromProcessModel Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 18.11.2012
 */
package net.finmath.montecarlo.process;

import java.util.ArrayList;
import java.util.Map;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

import net.finmath.concurrency.FutureWrapper;
import net.finmath.montecarlo.IndependentIncrements;
import net.finmath.montecarlo.model.ProcessModel;
import net.finmath.stochastic.RandomVariable;

/**
 * This class implements some numerical schemes for multi-dimensional multi-factor Ito process.
 *
 * 

* It features the standard Euler scheme and the standard predictor-corrector Euler scheme * for Y, then applies the state space transform \( X = f(Y) \). *

* *

* For the standard Euler scheme the process \( Y = (Y_{1},\ldots,Y_{d}) \) is discretized as * \[ * Y_{j}(t_{i+1}) = Y_{j}(t_{i}) + \mu_{j}(t_{i}) \Delta t_{i} + \lambda_{1,j}(t_{i}) \Delta W_{1}(t_{i}) + \ldots + \lambda_{m,j} \Delta W_{m} \text{.} * \] *

* * The parameters have to be provided by a {@link net.finmath.montecarlo.model.ProcessModel}: *
    *
  • \( f \) - applyStateSpaceTransform
  • *
  • \( Y(t_{0}) \) - getInitialState
  • *
  • \( \mu \) - getDrift
  • *
  • \( \lambda_{j} \) - getFactorLoading
  • *
* *

* Using the state space transform \( (t,x) \mapsto \exp(x) \), it is possible to create a log-Euler scheme, i.e., * \[ * X(t_{i+1}) = X(t_{i}) \cdot \exp\left( (r(t_{i}) - \frac{1}{2} \sigma(t_{i})^2) \Delta t_{i} + \sigma(t_{i}) \Delta W(t_{i}) \right) \text{.} * \] * for a process \( \mathrm{d} X = r X \mathrm{d}t + \sigma X \mathrm{d}W \). *

* * The dimension \( d \) is called numberOfComponents here. * The value \( m \) is called numberOfFactors here. * The default for numberOfFactors is 1. * * @author Christian Fries * @see net.finmath.montecarlo.model.ProcessModel The interface definition contains more details. * @version 1.4 */ public class EulerSchemeFromProcessModel extends MonteCarloProcessFromProcessModel { private static boolean isUseMultiThreadding; static { // Default value is true isUseMultiThreadding = Boolean.parseBoolean(System.getProperty("net.finmath.montecarlo.process.EulerSchemeFromProcessModel.isUseMultiThreadding","true")); } public enum Scheme { EULER, PREDICTOR_CORRECTOR, EULER_FUNCTIONAL, PREDICTOR_CORRECTOR_FUNCTIONAL } private final IndependentIncrements stochasticDriver; private final Scheme scheme; // Used locally for multi-threadded calculation. private ExecutorService executor; /* * The storage of the simulated stochastic process. */ private transient RandomVariable[][] discreteProcess = null; private transient RandomVariable[] discreteProcessWeights; /** * Create an Euler discretization scheme. * * @param model The model (the SDE specifcation) used to generate the (sampling of the) stochastic process. * @param stochasticDriver The stochastic driver of the process (e.g. a Brownian motion). * @param scheme The scheme to use. See {@link Scheme}. */ public EulerSchemeFromProcessModel(final ProcessModel model, final IndependentIncrements stochasticDriver, final Scheme scheme) { super(stochasticDriver.getTimeDiscretization(), model); this.stochasticDriver = stochasticDriver; this.scheme = scheme; } /** * Create an Euler discretization scheme. * * @param model The model (the SDE specification) used to generate the (sampling of the) stochastic process. * @param stochasticDriver The stochastic driver of the process (e.g. a Brownian motion). */ public EulerSchemeFromProcessModel(final ProcessModel model, final IndependentIncrements stochasticDriver) { super(stochasticDriver.getTimeDiscretization(), model); this.stochasticDriver = stochasticDriver; Scheme scheme = Scheme.EULER_FUNCTIONAL; // Default, unless applyStateSpaceTransformInverse is not provided try { model.applyStateSpaceTransformInverse(null, 0, 0, null); } catch(UnsupportedOperationException e) { // If the inverse is not specified we cannot perform the function EULER scheme = Scheme.EULER; } catch(Exception e) {}; this.scheme = scheme; } /** * This method returns the realization of the process at a certain time index. * * @param timeIndex Time index at which the process should be observed * @return A vector of process realizations (on path) */ @Override public RandomVariable getProcessValue(final int timeIndex, final int componentIndex) { // Thread safe lazy initialization synchronized(this) { if (discreteProcess == null || discreteProcess.length == 0) { doPrecalculateProcess(); } } if(discreteProcess[timeIndex][componentIndex] == null) { throw new NullPointerException("Generation of process component " + componentIndex + " at time index " + timeIndex + " failed. Likely due to out of memory"); } // Return value of process return discreteProcess[timeIndex][componentIndex]; } /** * This method returns the weights of a weighted Monte Carlo method (the probability density). * * @param timeIndex Time index at which the process should be observed * @return A vector of positive weights */ @Override public RandomVariable getMonteCarloWeights(final int timeIndex) { // Thread safe lazy initialization synchronized(this) { if (discreteProcessWeights == null || discreteProcessWeights.length == 0) { doPrecalculateProcess(); } } // Return value of process return discreteProcessWeights[timeIndex]; } /** * Calculates the whole (discrete) process. */ private void doPrecalculateProcess() { if (discreteProcess != null && discreteProcess.length != 0) { return; } final int numberOfPaths = this.getNumberOfPaths(); final int numberOfFactors = this.getNumberOfFactors(); final int numberOfComponents = this.getNumberOfComponents(); // Allocate Memory discreteProcess = new RandomVariable[getTimeDiscretization().getNumberOfTimeSteps() + 1][getNumberOfComponents()]; discreteProcessWeights = new RandomVariable[getTimeDiscretization().getNumberOfTimeSteps() + 1]; // Set initial Monte-Carlo weights discreteProcessWeights[0] = stochasticDriver.getRandomVariableForConstant(1.0 / numberOfPaths); // Set initial value final RandomVariable[] initialState = getInitialState(); final RandomVariable[] currentState = new RandomVariable[numberOfComponents]; for (int componentIndex = 0; componentIndex < numberOfComponents; componentIndex++) { currentState[componentIndex] = initialState[componentIndex]; discreteProcess[0][componentIndex] = applyStateSpaceTransform(0, componentIndex, currentState[componentIndex]); } /* * Evolve the process using an Euler scheme. * The evolution is performed multi-threadded. * Each component of the vector runs in its own thread. */ executor = Executors.newCachedThreadPool(); // Evolve process for (int timeIndex2 = 1; timeIndex2 < getTimeDiscretization().getNumberOfTimeSteps()+1; timeIndex2++) { final int timeIndex = timeIndex2; // Generate process from timeIndex-1 to timeIndex final double deltaT = getTime(timeIndex) - getTime(timeIndex - 1); // Fetch drift vector final RandomVariable[] drift; try { drift = getDrift(timeIndex - 1, discreteProcess[timeIndex - 1], null); } catch(final Exception e) { throw new RuntimeException(e + " - drift calculaton failed at time index " + timeIndex + " (time=" + getTime(timeIndex - 1) + ") . See cause of this exception for details.", e); } // Fetch brownianIncrement vector final RandomVariable[] brownianIncrement = stochasticDriver.getIncrement(timeIndex - 1); // Calculate new realization final ArrayList> discreteProcessAtCurrentTimeIndex = new ArrayList<>(numberOfComponents); for (int componentIndex2 = 0; componentIndex2 < numberOfComponents; componentIndex2++) { final int componentIndex = componentIndex2; final RandomVariable driftOfComponent = drift[componentIndex]; // Check if the component process has stopped to evolve if (driftOfComponent == null) { discreteProcessAtCurrentTimeIndex.add(componentIndex, null); continue; } final Callable worker = new Callable() { @Override public RandomVariable call() { if(scheme == Scheme.EULER_FUNCTIONAL || scheme == Scheme.PREDICTOR_CORRECTOR_FUNCTIONAL) { currentState[componentIndex] = applyStateSpaceTransformInverse(timeIndex - 1, componentIndex, discreteProcess[timeIndex - 1][componentIndex]); } final RandomVariable[] factorLoadings = getFactorLoading(timeIndex - 1, componentIndex, discreteProcess[timeIndex - 1]); // Check if the component process has stopped to evolve if (factorLoadings == null) { return null; } // Apply drift if(driftOfComponent != null) { currentState[componentIndex] = currentState[componentIndex].addProduct(driftOfComponent, deltaT); // mu DeltaT } // Apply diffusion currentState[componentIndex] = currentState[componentIndex].addSumProduct(factorLoadings, brownianIncrement); // sigma DeltaW // Transform the state space to the value space and return it. return applyStateSpaceTransform(timeIndex, componentIndex, currentState[componentIndex]); } }; /* * Optional multi-threadding (asyncronous calculation of the components) */ Future result = null; try { if(isUseMultiThreadding) { result = executor.submit(worker); } else { result = new FutureWrapper<>(worker.call()); } } catch (final Exception e) { throw new RuntimeException("Euler step failed at time index " + timeIndex + " (time=" + getTime(timeIndex) + "). See cause of this exception for details.", e); } // The following line will add the result of the calculation to the vector discreteProcessAtCurrentTimeIndex discreteProcessAtCurrentTimeIndex.add(componentIndex, result); } // Fetch results and move to discreteProcess[timeIndex] for (int componentIndex = 0; componentIndex < numberOfComponents; componentIndex++) { try { final Future discreteProcessAtCurrentTimeIndexAndComponent = discreteProcessAtCurrentTimeIndex.get(componentIndex); if(discreteProcessAtCurrentTimeIndexAndComponent != null) { discreteProcess[timeIndex][componentIndex] = discreteProcessAtCurrentTimeIndexAndComponent.get().cache(); } else { discreteProcess[timeIndex][componentIndex] = discreteProcess[timeIndex-1][componentIndex]; } } catch (final InterruptedException | ExecutionException e) { throw new RuntimeException("Euler step failed at time index " + timeIndex + " (time=" + getTime(timeIndex) + "). See cause of this exception for details.", e.getCause()); } } if (scheme == Scheme.PREDICTOR_CORRECTOR || scheme == Scheme.PREDICTOR_CORRECTOR_FUNCTIONAL) { // Apply corrector step to realizations at next time step final RandomVariable[] driftWithPredictor = getDrift(timeIndex - 1, discreteProcess[timeIndex], null); for (int componentIndex = 0; componentIndex < getNumberOfComponents(); componentIndex++) { final RandomVariable driftWithPredictorOfComponent = driftWithPredictor[componentIndex]; final RandomVariable driftWithoutPredictorOfComponent = drift[componentIndex]; if (driftWithPredictorOfComponent == null || driftWithoutPredictorOfComponent == null) { continue; } // Calculated the predictor corrector drift adjustment final RandomVariable driftAdjustment = driftWithPredictorOfComponent.sub(driftWithoutPredictorOfComponent).div(2.0).mult(deltaT); // Add drift adjustment currentState[componentIndex] = currentState[componentIndex].add(driftAdjustment); // Re-apply state space transform discreteProcess[timeIndex][componentIndex] = applyStateSpaceTransform(timeIndex, componentIndex, currentState[componentIndex]); } // End for(componentIndex) } // End if(scheme == Scheme.PREDICTOR_CORRECTOR) // Set Monte-Carlo weights discreteProcessWeights[timeIndex] = discreteProcessWeights[timeIndex - 1]; } // End for(timeIndex) try { executor.shutdown(); } catch(final SecurityException e) { // @TODO Improve exception handling here } } /** * @return Returns the numberOfPaths. */ @Override public int getNumberOfPaths() { return stochasticDriver.getNumberOfPaths(); } /** * @return Returns the numberOfFactors. */ @Override public int getNumberOfFactors() { return stochasticDriver.getNumberOfFactors(); } /** * @return Returns the independent increments interface used in the generation of the process */ @Override public IndependentIncrements getStochasticDriver() { return stochasticDriver; } /** * @return Returns the scheme. */ public Scheme getScheme() { return scheme; } @Override public EulerSchemeFromProcessModel clone() { return new EulerSchemeFromProcessModel(getModel(), getStochasticDriver(), scheme); } @Override public MonteCarloProcess getCloneWithModifiedModel(ProcessModel model) { return new EulerSchemeFromProcessModel(model, getStochasticDriver(), scheme); } @Override public MonteCarloProcess getCloneWithModifiedData(final Map dataModified) { final ProcessModel newModel = (ProcessModel) dataModified.getOrDefault("model", getModel()); if(dataModified.containsKey("seed") && dataModified.containsKey("stochasticDriver")) { throw new IllegalArgumentException("Simultaneous specification of stochasticDriver and seed."); } final IndependentIncrements newStochasticDriver; if(dataModified.containsKey("seed")) { newStochasticDriver = getStochasticDriver().getCloneWithModifiedSeed((int)dataModified.get("seed")); } else if(dataModified.containsKey("stochasticDriver")) { newStochasticDriver = (IndependentIncrements) dataModified.getOrDefault("stochasticDriver", stochasticDriver); } else { newStochasticDriver = stochasticDriver; } final Scheme newScheme = (Scheme) dataModified.getOrDefault("scheme", scheme); return new EulerSchemeFromProcessModel(newModel, newStochasticDriver, newScheme); } @Override public Object getCloneWithModifiedSeed(final int seed) { return new EulerSchemeFromProcessModel(getModel(), getStochasticDriver().getCloneWithModifiedSeed(seed)); } @Override public String toString() { return "EulerSchemeFromProcessModel [stochasticDriver=" + stochasticDriver + ", scheme=" + scheme + ", executor=" + executor + "]"; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy