net.finmath.optimizer.OptimizerFactoryCMAES Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 30.05.2015
*/
package net.finmath.optimizer;
import org.apache.commons.math3.optim.SimplePointChecker;
import org.apache.commons.math3.random.MersenneTwister;
import net.finmath.optimizer.Optimizer.ObjectiveFunction;
/**
* @author Christian Fries
*
* @version 1.0
*/
public class OptimizerFactoryCMAES implements OptimizerFactory {
private final double accuracy;
private final int maxIterations;
private final double[] parameterLowerBound;
private final double[] parameterUppderBound;
private final double[] parameterStandardDeviation;
public OptimizerFactoryCMAES(final double accuracy, final int maxIterations,
final double[] parameterLowerBound, final double[] parameterUppderBound,
final double[] parameterStandardDeviation) {
super();
this.accuracy = accuracy;
this.maxIterations = maxIterations;
this.parameterLowerBound = parameterLowerBound;
this.parameterUppderBound = parameterUppderBound;
this.parameterStandardDeviation = parameterStandardDeviation;
}
public OptimizerFactoryCMAES(final double accuracy, final int maxIterations, final double[] parameterStandardDeviation) {
super();
this.accuracy = accuracy;
this.maxIterations = maxIterations;
parameterLowerBound = null;
parameterUppderBound = null;
this.parameterStandardDeviation = parameterStandardDeviation;
}
public OptimizerFactoryCMAES(final double accuracy, final int maxIterations) {
super();
this.accuracy = accuracy;
this.maxIterations = maxIterations;
parameterLowerBound = null;
parameterUppderBound = null;
parameterStandardDeviation = null;
}
@Override
public Optimizer getOptimizer(final ObjectiveFunction objectiveFunction, final double[] initialParameters, final double[] targetValues) {
return getOptimizer(objectiveFunction, initialParameters, null, null, null, targetValues);
}
@Override
public Optimizer getOptimizer(final ObjectiveFunction objectiveFunction, final double[] initialParameters, final double[] lowerBound,final double[] upperBound, final double[] targetValues) {
return getOptimizer(objectiveFunction, initialParameters, lowerBound, upperBound, null, targetValues);
}
@Override
public Optimizer getOptimizer(final ObjectiveFunction objectiveFunction, final double[] initialParameters, final double[] lowerBound,final double[] upperBound, final double[] parameterStep, final double[] targetValues) {
final double[] values = new double[targetValues.length];
final double[] effectiveParameterLowerBound = parameterLowerBound != null ? parameterLowerBound : lowerBound;
final double[] effectiveParameterUpperBound = parameterUppderBound != null ? parameterUppderBound : upperBound;
final double[] effectiveParameterStandardDeviation = parameterStandardDeviation != null ? parameterStandardDeviation : parameterStep;
// Throw exception if std dev is non null, but lower bound / upper bound are null.
return new Optimizer() {
private org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer optimizer;
private org.apache.commons.math3.optim.PointValuePair result;
@Override
public double[] getBestFitParameters() {
return result.getPoint();
}
@Override
public double getRootMeanSquaredError() {
return result.getValue();
}
@Override
public int getIterations() {
return optimizer != null ? optimizer.getIterations() : 0;
}
@Override
public void run() {
optimizer = new org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer(maxIterations, accuracy, true, 0, 0, new MersenneTwister(3141), false, new SimplePointChecker(0, 0)) {
@Override
public double computeObjectiveValue(final double[] parameters) {
try {
objectiveFunction.setValues(parameters, values);
} catch (final SolverException e) {
return Double.NaN;
}
double rms = 0;
for(final double value : values) {
rms += value*value;
}
return Math.sqrt(rms);
}
@Override
public org.apache.commons.math3.optim.nonlinear.scalar.GoalType getGoalType() {
return org.apache.commons.math3.optim.nonlinear.scalar.GoalType.MINIMIZE;
}
@Override
public double[] getStartPoint() {
return initialParameters;
}
@Override
public double[] getLowerBound() {
return effectiveParameterLowerBound;
}
@Override
public double[] getUpperBound() {
return effectiveParameterUpperBound;
}
};
try {
result = optimizer.optimize(
new org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer.PopulationSize((int) (4 + 3 * Math.log(initialParameters.length))),
new org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer.Sigma(effectiveParameterStandardDeviation)
);
} catch(final org.apache.commons.math3.exception.MathIllegalStateException e) {
new SolverException(e);
}
}
};
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy