Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 09.02.2004
*/
package net.finmath.montecarlo.interestrate.models;
import java.util.ArrayList;
import java.util.Map;
import net.finmath.exception.CalculationException;
import net.finmath.functions.AnalyticFormulas;
import net.finmath.marketdata.model.AnalyticModel;
import net.finmath.marketdata.model.curves.DiscountCurve;
import net.finmath.marketdata.model.curves.DiscountCurveFromForwardCurve;
import net.finmath.marketdata.model.curves.ForwardCurve;
import net.finmath.marketdata.model.volatilities.SwaptionMarketData;
import net.finmath.marketdata.products.Swap;
import net.finmath.marketdata.products.SwapAnnuity;
import net.finmath.montecarlo.RandomVariableFactory;
import net.finmath.montecarlo.RandomVariableFromArrayFactory;
import net.finmath.montecarlo.RandomVariableFromDoubleArray;
import net.finmath.montecarlo.interestrate.CalibrationProduct;
import net.finmath.montecarlo.interestrate.LIBORMarketModel;
import net.finmath.montecarlo.interestrate.models.covariance.AbstractLIBORCovarianceModelParametric;
import net.finmath.montecarlo.interestrate.models.covariance.LIBORCovarianceModel;
import net.finmath.montecarlo.interestrate.products.AbstractTermStructureMonteCarloProduct;
import net.finmath.montecarlo.interestrate.products.SwaptionAnalyticApproximation;
import net.finmath.montecarlo.interestrate.products.SwaptionSimple;
import net.finmath.montecarlo.model.AbstractProcessModel;
import net.finmath.montecarlo.process.MonteCarloProcess;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.RegularSchedule;
import net.finmath.time.Schedule;
import net.finmath.time.TimeDiscretization;
import net.finmath.time.TimeDiscretizationFromArray;
/**
* Implements a basic LIBOR market model with some drift approximation methods.
*
* The class implements different measure(drift) / numeraire pairs (terminal and spot).
*
* The class specifies a LIBOR market model in its log-normal formulation, that is
* Lj = exp(Yj) where
*
* dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
*
* see {@link net.finmath.montecarlo.model.ProcessModel} for details on the implemented interface.
*
* The model uses an AbstractLIBORCovarianceModel for the specification of (λ1,j,...,λm,j) as a covariance model,
* which may have the ability to calibrate to swaptions.
*
* @see net.finmath.montecarlo.interestrate.models.covariance.AbstractLIBORCovarianceModel
*
* @author Christian Fries
* @version 1.1
*/
public class LIBORMarketModelStandard extends AbstractProcessModel implements LIBORMarketModel {
private static final boolean isUseAnalyticApproximation;
static {
// Default value is true;
isUseAnalyticApproximation = Boolean.parseBoolean(System.getProperty("net.finmath.montecarlo.interestrate.LIBORMarketModelStandard.isUseAnalyticApproximation","true"));
}
public enum Driftapproximation { EULER, LINE_INTEGRAL, PREDICTOR_CORRECTOR }
public enum Measure { SPOT, TERMINAL }
private final TimeDiscretization liborPeriodDiscretization;
private String forwardCurveName;
private AnalyticModel curveModel;
private final ForwardCurve forwardRateCurve;
private DiscountCurve discountCurve;
private final RandomVariableFactory randomVariableFactory = new RandomVariableFromArrayFactory();
private LIBORCovarianceModel covarianceModel;
private SwaptionMarketData swaptionMarketData;
private Driftapproximation driftApproximationMethod = Driftapproximation.EULER;
private Measure measure = Measure.SPOT;
// This is a cache of the integrated covariance.
private double[][][] integratedLIBORCovariance;
/**
* Creates a LIBOR Market Model for given covariance.
*
* @param liborPeriodDiscretization The discretization of the interest rate curve into forward rates (tenor structure).
* @param forwardRateCurve The initial values for the forward rates.
* @param covarianceModel The covariance model to use.
*/
public LIBORMarketModelStandard(
final TimeDiscretization liborPeriodDiscretization,
final ForwardCurve forwardRateCurve,
final LIBORCovarianceModel covarianceModel
) {
this.liborPeriodDiscretization = liborPeriodDiscretization;
this.forwardRateCurve = forwardRateCurve;
this.covarianceModel = covarianceModel;
}
/**
* Creates a LIBOR Market Model for given covariance.
*
* @param liborPeriodDiscretization The discretization of the interest rate curve into forward rates (tenor structure).
* @param forwardRateCurve The initial values for the forward rates.
* @param discountCurve The discount curve to use. This will create an LMM model with a deterministic zero-spread discounting adjustment.
* @param covarianceModel The covariance model to use.
*/
public LIBORMarketModelStandard(
final TimeDiscretization liborPeriodDiscretization,
final ForwardCurve forwardRateCurve,
final DiscountCurve discountCurve,
final LIBORCovarianceModel covarianceModel
) {
this.liborPeriodDiscretization = liborPeriodDiscretization;
this.forwardRateCurve = forwardRateCurve;
this.discountCurve = discountCurve;
this.covarianceModel = covarianceModel;
}
/**
* Creates a LIBOR Market Model using a given covariance model and calibrating this model
* to given swaption volatility data.
*
* @param liborPeriodDiscretization The discretization of the interest rate curve into forward rates (tenor structure).
* @param forwardRateCurve The initial values for the forward rates.
* @param covarianceModel The covariance model to use.
* @param swaptionMarketData The set of swaption values to calibrate to.
* @throws net.finmath.exception.CalculationException Thrown if the valuation fails, specific cause may be available via the cause() method.
*/
public LIBORMarketModelStandard(
final TimeDiscretization liborPeriodDiscretization,
final ForwardCurve forwardRateCurve,
final LIBORCovarianceModel covarianceModel,
final SwaptionMarketData swaptionMarketData
) throws CalculationException {
this(liborPeriodDiscretization, forwardRateCurve, null, covarianceModel, getCalibrationItems(liborPeriodDiscretization, forwardRateCurve, swaptionMarketData));
}
/**
* Creates a LIBOR Market Model for given covariance.
*
* @param liborPeriodDiscretization The discretization of the interest rate curve into forward rates (tenor structure).
* @param forwardRateCurve The initial values for the forward rates.
* @param discountCurve The discount curve to use. This will create an LMM model with a deterministic zero-spread discounting adjustment.
* @param covarianceModel The covariance model to use.
* @param swaptionMarketData The set of swaption values to calibrate to.
* @throws net.finmath.exception.CalculationException Thrown if the valuation fails, specific cause may be available via the cause() method.
*/
public LIBORMarketModelStandard(
final TimeDiscretization liborPeriodDiscretization,
final ForwardCurve forwardRateCurve,
final DiscountCurve discountCurve,
final LIBORCovarianceModel covarianceModel,
final SwaptionMarketData swaptionMarketData
) throws CalculationException {
this(liborPeriodDiscretization, forwardRateCurve, discountCurve, covarianceModel, getCalibrationItems(liborPeriodDiscretization, forwardRateCurve, swaptionMarketData));
}
/**
* Creates a LIBOR Market Model for given covariance.
*
* @param liborPeriodDiscretization The discretization of the interest rate curve into forward rates (tenor structure).
* @param forwardRateCurve The initial values for the forward rates.
* @param discountCurve The discount curve to use. This will create an LMM model with a deterministic zero-spread discounting adjustment.
* @param covarianceModel The covariance model to use.
* @param calibrationProducts The vector of calibration items (a union of a product, target value and weight) for the objective function sum weight(i) * (modelValue(i)-targetValue(i).
* @throws net.finmath.exception.CalculationException Thrown if the valuation fails, specific cause may be available via the cause() method.
*/
public LIBORMarketModelStandard(
final TimeDiscretization liborPeriodDiscretization,
final ForwardCurve forwardRateCurve,
final DiscountCurve discountCurve,
final LIBORCovarianceModel covarianceModel,
final CalibrationProduct[] calibrationProducts
) throws CalculationException {
this.liborPeriodDiscretization = liborPeriodDiscretization;
final double[] times = new double[liborPeriodDiscretization.getNumberOfTimeSteps()];
for(int i=0; i calibrationProducts = new ArrayList<>();
for(int exerciseIndex=0; exerciseIndex<=optionMaturities.getNumberOfTimeSteps(); exerciseIndex++) {
for(int tenorIndex=0; tenorIndex<=tenor.getNumberOfTimeSteps()-exerciseIndex; tenorIndex++) {
// Create a swaption
final double exerciseDate = optionMaturities.getTime(exerciseIndex);
final double swapLength = tenor.getTime(tenorIndex);
if(liborPeriodDiscretization.getTimeIndex(exerciseDate) < 0) {
continue;
}
if(liborPeriodDiscretization.getTimeIndex(exerciseDate+swapLength) <= liborPeriodDiscretization.getTimeIndex(exerciseDate)) {
continue;
}
final int numberOfPeriods = (int)(swapLength / swapPeriodLength);
final double[] fixingDates = new double[numberOfPeriods];
final double[] paymentDates = new double[numberOfPeriods];
final double[] swapTenorTimes = new double[numberOfPeriods+1];
for(int periodStartIndex=0; periodStartIndext for which the numeraire should be returned N(t).
* @return The numeraire at the specified time as RandomVariableFromDoubleArray
* @throws net.finmath.exception.CalculationException Thrown if the valuation fails, specific cause may be available via the cause() method.
*/
@Override
public RandomVariable getNumeraire(final MonteCarloProcess process, double time) throws CalculationException {
final int timeIndex = getLiborPeriodIndex(time);
if(timeIndex < 0) {
// Interpolation of Numeraire: linear interpolation of the reciprocal.
final int lowerIndex = -timeIndex -1;
final int upperIndex = -timeIndex;
final double alpha = (time-getLiborPeriod(lowerIndex)) / (getLiborPeriod(upperIndex) - getLiborPeriod(lowerIndex));
return getNumeraire(process, getLiborPeriod(upperIndex)).invert().mult(alpha).add(getNumeraire(process, getLiborPeriod(lowerIndex)).invert().mult(1.0-alpha)).invert();
}
// Calculate the numeraire, when time is part of liborPeriodDiscretization
// Get the start of the product
int firstLiborIndex = getLiborPeriodIndex(time);
if(firstLiborIndex < 0) {
throw new CalculationException("Simulation time discretization not part of forward rate tenor discretization.");
}
// Get the end of the product
int lastLiborIndex = liborPeriodDiscretization.getNumberOfTimeSteps()-1;
if(measure == Measure.SPOT) {
// Spot measure
firstLiborIndex = 0;
lastLiborIndex = getLiborPeriodIndex(time)-1;
}
/*
* Calculation of the numeraire
*/
// Initialize to 1.0
RandomVariable numeraire = new RandomVariableFromDoubleArray(time, 1.0);
// The product
for(int liborIndex = firstLiborIndex; liborIndex<=lastLiborIndex; liborIndex++) {
final RandomVariable libor = getLIBOR(process, process.getTimeIndex(Math.min(time,liborPeriodDiscretization.getTime(liborIndex))), liborIndex);
final double periodLength = liborPeriodDiscretization.getTimeStep(liborIndex);
if(measure == Measure.SPOT) {
numeraire = numeraire.accrue(libor, periodLength);
}
else {
numeraire = numeraire.discount(libor, periodLength);
}
}
/*
* Adjust for discounting
*/
if(discountCurve != null) {
final DiscountCurve discountcountCurveFromForwardPerformance = new DiscountCurveFromForwardCurve(forwardRateCurve);
final double deterministicNumeraireAdjustment = discountcountCurveFromForwardPerformance.getDiscountFactor(time) / discountCurve.getDiscountFactor(time);
numeraire = numeraire.mult(deterministicNumeraireAdjustment);
}
return numeraire;
}
@Override
public RandomVariable[] getInitialState(MonteCarloProcess process) {
final double[] liborInitialStates = new double[liborPeriodDiscretization.getNumberOfTimeSteps()];
for(int timeIndex=0; timeIndexgetNumeraire.
*
* @param process The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
* @param timeIndex Time index i for which the drift should be returned μ(ti).
* @param realizationAtTimeIndex Time current forward rate vector at time index i which should be used in the calculation.
* @return The drift vector μ(ti) as RandomVariableFromDoubleArray[]
*/
@Override
public RandomVariable[] getDrift(final MonteCarloProcess process, final int timeIndex, final RandomVariable[] realizationAtTimeIndex, final RandomVariable[] realizationPredictor) {
final double time = process.getTime(timeIndex);
int firstLiborIndex = this.getLiborPeriodIndex(time)+1;
if(firstLiborIndex<0) {
firstLiborIndex = -firstLiborIndex-1 + 1;
}
// Allocate drift vector and initialize to zero (will be used to sum up drift components)
final RandomVariable[] drift = new RandomVariable[getNumberOfComponents()];
final RandomVariable[][] covarianceFactorSums = new RandomVariable[getNumberOfComponents()][getNumberOfFactors()];
for(int componentIndex=firstLiborIndex; componentIndex firstLiborIndex) {
covarianceFactorSums[componentIndex][factorIndex] = covarianceFactorSums[componentIndex][factorIndex].add(covarianceFactorSums[componentIndex-1][factorIndex]);
}
}
for(int factorIndex=0; factorIndex= liborPeriodDiscretization.getNumberOfTimes()) {
throw new ArrayIndexOutOfBoundsException("Index for LIBOR period discretization out of bounds.");
}
return liborPeriodDiscretization.getTime(timeIndex);
}
/* (non-Javadoc)
* @see net.finmath.montecarlo.interestrate.LIBORMarketModel#getLiborPeriodIndex(double)
*/
@Override
public int getLiborPeriodIndex(final double time) {
return liborPeriodDiscretization.getTimeIndex(time);
}
/* (non-Javadoc)
* @see net.finmath.montecarlo.interestrate.LIBORMarketModel#getLiborPeriodDiscretization()
*/
@Override
public TimeDiscretization getLiborPeriodDiscretization() {
return liborPeriodDiscretization;
}
/**
* Alternative implementation for the drift. For experimental purposes.
*
* @param timeIndex
* @param componentIndex
* @param realizationAtTimeIndex
* @param realizationPredictor
* @return
*/
private RandomVariable getDrift(final MonteCarloProcess process, final int timeIndex, final int componentIndex, final RandomVariable[] realizationAtTimeIndex, final RandomVariable[] realizationPredictor) {
// Check if this LIBOR is already fixed
if(process.getTime(timeIndex) >= this.getLiborPeriod(componentIndex)) {
return null;
}
/*
* We implemented several different methods to calculate the drift
*/
if(driftApproximationMethod == Driftapproximation.PREDICTOR_CORRECTOR && realizationPredictor != null) {
RandomVariable drift = getDriftEuler(process, timeIndex, componentIndex, realizationAtTimeIndex);
final RandomVariable driftEulerWithPredictor = getDriftEuler(process, timeIndex, componentIndex, realizationPredictor);
drift = drift.add(driftEulerWithPredictor).div(2.0);
return drift;
}
else if(driftApproximationMethod == Driftapproximation.LINE_INTEGRAL && realizationPredictor != null) {
return getDriftLineIntegral(process, timeIndex, componentIndex, realizationAtTimeIndex, realizationPredictor);
}
else {
return getDriftEuler(process, timeIndex, componentIndex, realizationAtTimeIndex);
}
}
protected RandomVariable getDriftEuler(final MonteCarloProcess process, final int timeIndex, final int componentIndex, final RandomVariable[] liborVectorStart) {
// The following is the drift of the LIBOR component
final double time = process.getTime(timeIndex);
// Initialize to 0.0
RandomVariable drift = new RandomVariableFromDoubleArray(time, 0.0);
// Get the start and end of the summation (start is the LIBOR after the current LIBOR component, end is the last LIBOR)
int firstLiborIndex, lastLiborIndex;
switch(measure) {
case SPOT:
// Spot measure
firstLiborIndex = this.getLiborPeriodIndex(time)+1;
if(firstLiborIndex<0) {
firstLiborIndex = -firstLiborIndex-1 + 1;
}
lastLiborIndex = componentIndex;
break;
case TERMINAL:
default:
firstLiborIndex = componentIndex+1;
lastLiborIndex = liborPeriodDiscretization.getNumberOfTimeSteps()-1;
break;
}
// The sum
for(int liborIndex = firstLiborIndex; liborIndex<=lastLiborIndex; liborIndex++) {
final double periodLength = liborPeriodDiscretization.getTimeStep(liborIndex);
RandomVariable covariance = covarianceModel.getCovariance(timeIndex, componentIndex, liborIndex, null);
final RandomVariable libor = liborVectorStart[liborIndex];
covariance = covariance.mult(periodLength).mult(libor).discount(libor, periodLength);
drift = drift.add(covariance);
}
if(measure == Measure.TERMINAL) {
drift = drift.mult(-1.0);
}
// Drift adjustment for log-coordinate
final RandomVariable variance = covarianceModel.getCovariance(timeIndex, componentIndex, componentIndex, null);
drift = drift.addProduct(variance, -0.5);
return drift;
}
private RandomVariable getDriftLineIntegral(final MonteCarloProcess process, final int timeIndex, final int componentIndex, final RandomVariable[] liborVectorStart, final RandomVariable[] liborVectorEnd) {
// The following is the dirft of the LIBOR component
final double time = process.getTime(timeIndex);
// Check if this LIBOR is already fixed
if(process.getTime(timeIndex) >= this.getLiborPeriod(componentIndex)) {
return null;
}
// Initialize to 0.0
RandomVariable drift = new RandomVariableFromDoubleArray(time, 0.0);
// Get the start and end of the summation (start is the LIBOR after the current LIBOR component, end is the last LIBOR)
int firstLiborIndex, lastLiborIndex;
switch(measure) {
case SPOT:
// Spot measure
firstLiborIndex = this.getLiborPeriodIndex(time)+1;
if(firstLiborIndex<0) {
firstLiborIndex = -firstLiborIndex-1 + 1;
}
lastLiborIndex = componentIndex;
break;
case TERMINAL:
default:
firstLiborIndex = componentIndex+1;
lastLiborIndex = liborPeriodDiscretization.getNumberOfTimeSteps()-1;
break;
}
// The sum
for(int liborIndex = firstLiborIndex; liborIndex<=lastLiborIndex; liborIndex++) {
final double periodLength = liborPeriodDiscretization.getTimeStep(liborIndex);
final RandomVariable covariance = covarianceModel.getCovariance(timeIndex, componentIndex, liborIndex, null);
/*
* We calculate
* driftTerm = covariance * log( (1 + periodLength * liborVectorEnd[liborIndex]) / (1 + periodLength * liborVectorStart[liborIndex]) )
* / log(liborVectorEnd[liborIndex] / liborVectorStart[liborIndex])
*/
RandomVariable driftTerm = new RandomVariableFromDoubleArray(1.0);
driftTerm = driftTerm.accrue(liborVectorEnd[liborIndex], periodLength);
driftTerm = driftTerm.discount(liborVectorStart[liborIndex], periodLength);
driftTerm = driftTerm.log();
driftTerm = driftTerm.mult(covariance);
driftTerm = driftTerm.div(liborVectorEnd[liborIndex].div(liborVectorStart[liborIndex]).log());
drift = drift.sub(driftTerm);
}
return drift;
}
/**
* @return Returns the measure.
*/
public Measure getMeasure() {
return measure;
}
/* (non-Javadoc)
* @see net.finmath.montecarlo.interestrate.LIBORMarketModel#getIntegratedLIBORCovariance()
*/
@Override
public double[][][] getIntegratedLIBORCovariance(TimeDiscretization simulationTimeDiscretization) {
if(integratedLIBORCovariance != null) {
return integratedLIBORCovariance;
}
final TimeDiscretization liborPeriodDiscretization = getLiborPeriodDiscretization();
integratedLIBORCovariance = new double[simulationTimeDiscretization.getNumberOfTimeSteps()][liborPeriodDiscretization.getNumberOfTimeSteps()][liborPeriodDiscretization.getNumberOfTimeSteps()];
for(int componentIndex1 = 0; componentIndex1 < liborPeriodDiscretization.getNumberOfTimeSteps(); componentIndex1++) {
// Sum the libor cross terms (use symmetry)
for(int componentIndex2 = componentIndex1; componentIndex2 < liborPeriodDiscretization.getNumberOfTimeSteps(); componentIndex2++) {
double integratedLIBORCovarianceValue = 0.0;
for(int timeIndex = 0; timeIndex < simulationTimeDiscretization.getNumberOfTimeSteps(); timeIndex++) {
final double dt = simulationTimeDiscretization.getTimeStep(timeIndex);
final RandomVariable[] factorLoadingOfComponent1 = getCovarianceModel().getFactorLoading(simulationTimeDiscretization.getTime(timeIndex), liborPeriodDiscretization.getTime(componentIndex1), null);
final RandomVariable[] factorLoadingOfComponent2 = getCovarianceModel().getFactorLoading(simulationTimeDiscretization.getTime(timeIndex), liborPeriodDiscretization.getTime(componentIndex2), null);
for(int factorIndex = 0; factorIndex < getNumberOfFactors(); factorIndex++) {
integratedLIBORCovarianceValue += factorLoadingOfComponent1[factorIndex].get(0) * factorLoadingOfComponent2[factorIndex].get(0) * dt;
}
integratedLIBORCovariance[timeIndex][componentIndex1][componentIndex2] = integratedLIBORCovarianceValue;
}
}
}
return integratedLIBORCovariance;
}
@Override
public Object clone() {
return new LIBORMarketModelStandard(liborPeriodDiscretization, forwardRateCurve, covarianceModel);
}
/**
* @param driftApproximationMethod The driftApproximationMethod to set.
*/
public void setDriftApproximationMethod(final Driftapproximation driftApproximationMethod) {
this.driftApproximationMethod = driftApproximationMethod;
}
/**
* @param measure The measure to set.
*/
public void setMeasure(final Measure measure) {
this.measure = measure;
}
@Override
public AnalyticModel getAnalyticModel() {
return curveModel;
}
@Override
public DiscountCurve getDiscountCurve() {
if(discountCurve == null) {
final DiscountCurve discountCurveFromForwardCurve = new DiscountCurveFromForwardCurve(getForwardRateCurve());
return discountCurveFromForwardCurve;
}
return discountCurve;
}
@Override
public ForwardCurve getForwardRateCurve() {
return forwardRateCurve;
}
/**
* Return the swaption market data used for calibration (if any, may be null).
*
* @return The swaption market data used for calibration (if any, may be null).
*/
public SwaptionMarketData getSwaptionMarketData() {
return swaptionMarketData;
}
/* (non-Javadoc)
* @see net.finmath.montecarlo.interestrate.LIBORMarketModel#getCovarianceModel()
*/
@Override
public LIBORCovarianceModel getCovarianceModel() {
return covarianceModel;
}
/**
* @param covarianceModel A covariance model
* @return A new LIBORMarketModelStandard using the specified covariance model.
*/
@Override
public LIBORMarketModelStandard getCloneWithModifiedCovarianceModel(final LIBORCovarianceModel covarianceModel) {
final LIBORMarketModelStandard model = (LIBORMarketModelStandard)this.clone();
model.covarianceModel = covarianceModel;
return model;
}
@Override
public LIBORMarketModelStandard getCloneWithModifiedData(final Map dataModified) throws CalculationException {
TimeDiscretization liborPeriodDiscretization = this.liborPeriodDiscretization;
final AnalyticModel analyticModel = curveModel;
ForwardCurve forwardRateCurve = this.forwardRateCurve;
LIBORCovarianceModel covarianceModel = this.covarianceModel;
SwaptionMarketData swaptionMarketData = null;
if(dataModified.containsKey("liborPeriodDiscretization")) {
liborPeriodDiscretization = (TimeDiscretization)dataModified.get("liborPeriodDiscretization");
}
if(dataModified.containsKey("forwardRateCurve")) {
forwardRateCurve = (ForwardCurve)dataModified.get("forwardRateCurve");
}
if(dataModified.containsKey("forwardRateShift")) {
throw new RuntimeException("Forward rate shift clone currently disabled.");
}
if(dataModified.containsKey("covarianceModel")) {
covarianceModel = (LIBORCovarianceModel)dataModified.get("covarianceModel");
}
if(dataModified.containsKey("swaptionMarketData")) {
swaptionMarketData = (SwaptionMarketData)dataModified.get("swaptionMarketData");
}
if(swaptionMarketData == null) {
return new LIBORMarketModelStandard(liborPeriodDiscretization, forwardRateCurve, covarianceModel);
}
else {
return new LIBORMarketModelStandard(liborPeriodDiscretization, forwardRateCurve, covarianceModel, swaptionMarketData);
}
}
@Override
public Map getModelParameters() {
// TODO Add implementation
throw new UnsupportedOperationException();
}
}