net.finmath.functions.LogNormalDistribution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
The newest version!
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 10.01.2021
*/
package net.finmath.functions;
/**
* @author Christian Fries
* @version 1.0
*/
public class LogNormalDistribution {
// Create normal distribution (for if we use Jakarta Commons Math)
static final org.apache.commons.math3.distribution.LogNormalDistribution logNormalDistribution = new org.apache.commons.math3.distribution.LogNormalDistribution();
public static class LogNormalDistributionParameters {
private final double mean;
private final double standardDeviation;
private final double mu;
private final double sigma;
public LogNormalDistributionParameters(double mean, double standardDeviation, double mu, double sigma) {
super();
this.mean = mean;
this.standardDeviation = standardDeviation;
this.mu = mu;
this.sigma = sigma;
}
public double getMean() {
return mean;
}
public double getStandardDeviation() {
return standardDeviation;
}
public double getMu() {
return mu;
}
public double getSigma() {
return sigma;
}
}
private LogNormalDistribution() {
}
public static LogNormalDistributionParameters getParametersFromMuAndSigma(double mu, double sigma) {
final double mean = Math.exp(mu) * Math.exp(sigma*sigma/2);
final double standardDeviation = Math.exp(mu) * Math.sqrt((Math.exp(Math.pow(sigma,2))-1)*Math.exp(Math.pow(sigma,2)));
return new LogNormalDistributionParameters(mean, standardDeviation, mu, sigma);
}
public static LogNormalDistributionParameters getParametersFromMeanAndStdDev(double mean, double standardDeviation) {
final double mu = Math.log( mean / Math.sqrt(Math.pow(standardDeviation / mean,2)+1 ) );
final double sigma = Math.sqrt( 2 * (Math.log(mean)-mu) );
return new LogNormalDistributionParameters(mean, standardDeviation, mu, sigma);
}
/**
* Returns the value of the density at x.
*
* @param x Argument
* @return The value of the density at x.
*/
public static double density(final double x) {
return logNormalDistribution.density(x);
}
/**
* Cumulative distribution function of the standard normal distribution.
* The implementation is currently using Jakarta commons-math
*
* @param x A sample point
* @return The probability of being below x, given x is standard normal
*/
public static double cumulativeDistribution(final double x) {
return logNormalDistribution.cumulativeProbability(x);
}
/**
* Inverse of the cumulative distribution function of the standard normal distribution using Jakarta commons-math
*
* @param p The probability
* @return The quantile
*/
public static double inverseCumulativeDistribution(final double p) {
return logNormalDistribution.inverseCumulativeProbability(p);
}
}