net.finmath.montecarlo.IndependentIncrements Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
The newest version!
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 05.07.2014
*/
package net.finmath.montecarlo;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;
/**
* Interface description of a time-discrete n-dimensional stochastic process
* \( X = (X_{1},\ldots,X_{n}) \) provided by independent
* increments \( \Delta X(t_{i}) = X(t_{i+1})-X(t_{i}) \).
*
* Here the dimension n is called factors since this process is used to
* generate multi-dimensional multi-factor processes and there one might
* use a different number of factors to generate processes of different
* dimension.
*
* @author Christian Fries
* @version 1.3
*/
public interface IndependentIncrements {
/**
* Return the increment for a given timeIndex.
*
* The method returns the random variable vector
* Δ X(ti) := X(ti+1)-X(ti)
* for the given time index i.
*
* @param timeIndex The time index (corresponding to the this class's time discretization)
* @return The vector-valued increment (as a vector (array) of random variables).
*/
default RandomVariable[] getIncrement(final int timeIndex)
{
final RandomVariable[] increment = new RandomVariable[getNumberOfFactors()];
for(int factorIndex = 0; factorIndexΔ Xj(ti) := Xj(ti+1)-X(ti)
* for the given time index i and a given factor (index) j
*
* @param timeIndex The time index (corresponding to the this class's time discretization)
* @param factor The index of the factor (independent scalar increment)
* @return The factor (component) of the increments (a random variable)
*/
RandomVariable getIncrement(int timeIndex, int factor);
/**
* Returns the time discretization used for this set of time-discrete Brownian increments.
*
* @return The time discretization used for this set of time-discrete Brownian increments.
*/
TimeDiscretization getTimeDiscretization();
/**
* Returns the number of factors.
*
* @return The number of factors.
*/
int getNumberOfFactors();
/**
* Returns the number of paths.
*
* @return The number of paths.
*/
int getNumberOfPaths();
/**
* Returns a random variable which is initialized to a constant,
* but has exactly the same number of paths or discretization points as the ones used by this BrownianMotion.
*
* @param value The constant value to be used for initialized the random variable.
* @return A new random variable.
*/
RandomVariable getRandomVariableForConstant(double value);
/**
* Return a new object implementing BrownianMotion
* having the same specifications as this object but a different seed
* for the random number generator.
*
* This method is useful if you like to make Monte-Carlo samplings by changing
* the seed.
*
* @param seed New value for the seed.
* @return New object implementing BrownianMotion.
*/
IndependentIncrements getCloneWithModifiedSeed(int seed);
/**
* Return a new object implementing BrownianMotion
* having the same specifications as this object but a different
* time discretization.
*
* @param newTimeDiscretization New time discretization
* @return New object implementing BrownianMotion.
*/
IndependentIncrements getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization);
}