net.finmath.equities.models.SviVolatilitySurface Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.equities.models;
import java.time.LocalDate;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.stream.Collectors;
import net.finmath.equities.marketdata.VolatilityPoint;
import net.finmath.interpolation.RationalFunctionInterpolation;
import net.finmath.optimizer.LevenbergMarquardt;
import net.finmath.optimizer.SolverException;
import net.finmath.time.daycount.DayCountConvention;
/**
* Class that implements an SVI volatility surface according to Gatheral's 2013 paper.
* The smile-specific parts (i.e. for strikes at a single option expiry) are implemented
* in a separate class SviVolatilitySmile.
* The surface supports sticky-strike as well as sticky-moneyness of volatility.
* The calibration is currently done smile by smile, and does not guarantee absence of arbitrage.
*
* @author Andreas Grotz
*/
public class SviVolatilitySurface implements VolatilitySurface, ShiftedVolatilitySurface {
private final DayCountConvention dayCounter;
private final boolean useStickyStrike;
private LocalDate valuationDate;
private EquityForwardStructure forwardStructure;
private SviVolatilitySmile[] smiles = new SviVolatilitySmile[0];
private double[] smileTimes = new double[0];
private boolean isCalibrated = false;
private final double volShift;
public SviVolatilitySurface(DayCountConvention dayCounter, boolean useStickyStrike)
{
this.dayCounter = dayCounter;
this.useStickyStrike = useStickyStrike;
this.volShift = 0.0;
}
public SviVolatilitySurface(
LocalDate valuationDate,
DayCountConvention dayCounter,
EquityForwardStructure forwardStructure,
SviVolatilitySmile[] smiles,
boolean useStickyStrike)
{
this(valuationDate,
dayCounter,
forwardStructure,
smiles,
useStickyStrike,
0.0);
}
private SviVolatilitySurface(
LocalDate valuationDate,
DayCountConvention dayCounter,
EquityForwardStructure forwardStructure,
SviVolatilitySmile[] smiles,
boolean useStickyStrike,
double volShift)
{
this.dayCounter = dayCounter;
setForwardStructure(forwardStructure);
this.smiles = smiles;
this.useStickyStrike = useStickyStrike;
this.volShift = volShift;
final var sortedSmiles = Arrays.asList(smiles);
sortedSmiles.sort(Comparator.comparing(pt -> pt.getSmileDate()));
smileTimes = new double[sortedSmiles.size() + 1];
smileTimes[0] = 0.0;
for (int i = 0; i < sortedSmiles.size(); i++) {
smileTimes[i+1] = dayCounter.getDaycountFraction(valuationDate, sortedSmiles.get(i).getSmileDate());
}
isCalibrated = true;
}
@Override
public SviVolatilitySurface getShiftedSurface(double shift)
{
assert volShift == 0.0 : "Surface is already shifted";
return new SviVolatilitySurface(
this.valuationDate,
this.dayCounter,
this.forwardStructure,
this.smiles,
this.useStickyStrike,
this.volShift);
}
@Override
public double getShift()
{
return volShift;
}
public SviVolatilitySmile[] getSmiles()
{
return smiles;
}
private void setForwardStructure(EquityForwardStructure forwardStructure)
{
this.forwardStructure = forwardStructure;
valuationDate = forwardStructure.getValuationDate();
}
@Override
public double getVolatility(
double strike,
LocalDate expiryDate,
EquityForwardStructure currentForwardStructure)
{
final var timeToMaturity = dayCounter.getDaycountFraction(valuationDate, expiryDate);
return getVolatility(strike, timeToMaturity, currentForwardStructure);
}
@Override
public double getVolatility(
double strike,
double timeToMaturity,
EquityForwardStructure currentForwardStructure)
{
// sticky moneyness
assert isCalibrated : "Surface is not calibrated yet";
double logStrike;
if(useStickyStrike) {
logStrike = forwardStructure.getLogMoneyness(strike, timeToMaturity);
} else {
logStrike = currentForwardStructure.getLogMoneyness(strike, timeToMaturity);
}
return interpolateVolatility(logStrike, timeToMaturity);
}
@Override
public double getLocalVolatility(
double strike,
LocalDate expiryDate,
EquityForwardStructure currentForwardStructure,
double strikeShift,
double timeShift)
{
assert isCalibrated : "Surface is not calibrated yet";
final var logStrike = currentForwardStructure.getLogMoneyness(strike, expiryDate);
final var timeToMaturity = dayCounter.getDaycountFraction(valuationDate, expiryDate);
return getLocalVolatility(logStrike, timeToMaturity, currentForwardStructure, strikeShift, timeShift);
}
@Override
public double getLocalVolatility(
double logStrike,
double timeToMaturity,
EquityForwardStructure currentForwardStructure,
double strikeShift,
double timeShift)
{
assert isCalibrated : "Surface is not calibrated yet";
// Log-strike is provided w.r.t. current forward structure.
// When using sticky strike, we need to transform
// to log-strike w.r.t. forward structure prevailing during surface calbration
if (useStickyStrike)
{
final var expiryTimeAsofCalib = timeToMaturity + dayCounter.getDaycountFraction(
valuationDate, currentForwardStructure.getValuationDate());
logStrike += Math.log(currentForwardStructure.getForward(timeToMaturity)
/ forwardStructure.getForward(expiryTimeAsofCalib));
}
if (timeToMaturity >= 1e-16)
{
final var f = interpolateTotalVariance(logStrike, timeToMaturity);
var f_t = interpolateTotalVariance(logStrike, timeToMaturity + timeShift);
f_t = (f_t - f) / timeShift;
final var f_plu = interpolateTotalVariance(logStrike + strikeShift, timeToMaturity);
final var f_min = interpolateTotalVariance(logStrike - strikeShift, timeToMaturity);
final var f_x = 0.5 * (f_plu - f_min) / strikeShift;
final var f_xx = (f_plu + f_min - 2 * f) / strikeShift / strikeShift;
var lv = 0.5 * f_x * logStrike / f - 1.0;
lv *= lv;
lv += 0.5 * f_xx - 0.25 * (0.25 + 1.0 / f) * f_x * f_x;
return Math.sqrt(f_t / lv);
}
else if (timeToMaturity >= 0.0) {
return getLocalVolatility(logStrike, 1e-16, currentForwardStructure, strikeShift, timeShift);
} else {
return 0.0;
}
}
private double interpolateVolatility(double logStrike, double timeToMaturity)
{
if (timeToMaturity >= 1e-16) {
return Math.sqrt(interpolateTotalVariance(logStrike, timeToMaturity) / timeToMaturity);
} else if (timeToMaturity >= 0.0) {
return interpolateVolatility(logStrike, 1e-16);
} else {
return 0.0;
}
}
private double interpolateTotalVariance(double logStrike, double timeToMaturity)
{
final var len = smileTimes.length;
final var totalVariances = new double[len];
totalVariances[0] = 0.0;
for (int i = 1; i< len; i++) {
totalVariances[i] = smiles[i-1].getTotalVariance(logStrike);
}
final RationalFunctionInterpolation interpolator = new RationalFunctionInterpolation(
smileTimes,
totalVariances,
RationalFunctionInterpolation.InterpolationMethod.LINEAR,
RationalFunctionInterpolation.ExtrapolationMethod.LINEAR);
final var totalVariance = interpolator.getValue(timeToMaturity);
if (volShift == 0.0) {
return totalVariance;
} else {
return totalVariance + volShift * (2 * Math.sqrt(totalVariance * timeToMaturity) + volShift * timeToMaturity);
}
}
@Override
public void calibrate(
EquityForwardStructure forwardStructure,
ArrayList volaPoints)
{
/*TODO The current calibration is smile by smile. It does not ensure absence of arbitrage.
* An improved calibration would use optimization constraints obtained from
* the density formula from Gatheral's 2013 paper to remove butterfly arbitrage,
* as well as monotonicity of total variances to remove calendar arbitrage.
* A natural initial guess would then be a globally calibrated SSVI surface as described
* in Gatheral's 2013 paper.*/
assert volShift == 0.0 : "A shifted SVI surface cannot be calibrated";
setForwardStructure(forwardStructure);
final var groupedPoints =
volaPoints.stream().collect(Collectors.groupingBy(VolatilityPoint::getDate));
final var sortedSmileDates = Arrays.asList(groupedPoints.keySet().toArray(new LocalDate[0]));
sortedSmileDates.sort(Comparator.comparing(pt -> pt));
smileTimes = new double[sortedSmileDates.size() + 1];
smileTimes[0] = 0.0;
smiles = new SviVolatilitySmile[sortedSmileDates.size()];
for (int i = 0; i < sortedSmileDates.size(); i++)
{
final var date = sortedSmileDates.get(i);
final var thisPoints = groupedPoints.get(date);
thisPoints.sort(Comparator.comparing(pt -> pt.getStrike()));
final var forward = forwardStructure.getDividendAdjustedStrike(forwardStructure.getForward(date), date) ;
final var ttm = dayCounter.getDaycountFraction(valuationDate, date);
final var logStrikes = new ArrayList();
final var totalVariances = new ArrayList();
for (final var pt : thisPoints)
{
totalVariances.add(ttm * pt.getVolatility() * pt.getVolatility());
logStrikes.add(Math.log(forwardStructure.getDividendAdjustedStrike(pt.getStrike(), date) / forward));
}
double[] thisSviParams;
try
{
thisSviParams = calibrateSviSmile(ttm, logStrikes, totalVariances);
}
catch (final SolverException se)
{
continue;
}
smileTimes[i+1] = ttm;
smiles[i] = new SviVolatilitySmile(date, thisSviParams[0], thisSviParams[1], thisSviParams[2], thisSviParams[3], thisSviParams[4]);
}
isCalibrated = true;
}
private static double[] calibrateSviSmile(double ttm, ArrayList logStrikes, ArrayList totalVariances) throws SolverException
{
final LevenbergMarquardt optimizer = new LevenbergMarquardt() {
private static final long serialVersionUID = -2542034123359128169L;
@Override
public void setValues(final double[] parameters, final double[] values) {
for(int i = 0; i < logStrikes.size(); i++)
{
values[i] = SviVolatilitySmile.sviTotalVariance(
logStrikes.get(i),
parameters[0],
parameters[1],
parameters[2],
parameters[3],
parameters[4]);
}
}
};
final var initialGuess = SviVolatilitySmile.sviInitialGuess(logStrikes, totalVariances);
final var weights = new double[logStrikes.size()];
final var targetValues = new double[logStrikes.size()];
for (int i = 0; i < logStrikes.size(); i++)
{
weights[i] = 1.0;
targetValues[i] = totalVariances.get(i);
}
optimizer.setInitialParameters(initialGuess);
optimizer.setWeights(weights);
optimizer.setMaxIteration(100);
optimizer.setTargetValues(targetValues);
optimizer.run();
return optimizer.getBestFitParameters();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy