net.finmath.montecarlo.MertonJumpProcess Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.montecarlo;
import java.io.Serializable;
import java.util.function.DoubleUnaryOperator;
import java.util.function.IntFunction;
import net.finmath.functions.NormalDistribution;
import net.finmath.functions.PoissonDistribution;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;
/**
* Implementation of the compound Poisson process for the Merton jump diffusion model.
*
* @author Christian Fries
* @author Alessandro Gnoatto
*/
public class MertonJumpProcess implements IndependentIncrements, Serializable {
private static final long serialVersionUID = -6984273344382051927L;
private final RandomVariableFactory randomVariableFactory;
private final IndependentIncrements internalProcess;
private final double jumpIntensity;
private final double jumpSizeMean;
private final double jumpSizeStDev;
/**
* Constructs a Merton Jump Process for Monte Carlo simulation.
*
* @param jumpIntensity The jump intensity.
* @param jumpSizeMean The mean of the jump size distribution.
* @param jumpSizeStDev The std dev of the jump size distribution.
* @param timeDiscretization The time discretization of the process.
* @param numberOfPaths The number of path.
* @param seed The seed for the random number generator.
*/
public MertonJumpProcess(double jumpIntensity, double jumpSizeMean, double jumpSizeStDev,
TimeDiscretization timeDiscretization,
int numberOfPaths, int seed) {
super();
// TODO randomVariableFactory should become a parameter to allow AAD
this.randomVariableFactory = new RandomVariableFromArrayFactory();
this.jumpIntensity = jumpIntensity;
this.jumpSizeMean = jumpSizeMean;
this.jumpSizeStDev = jumpSizeStDev;
final IntFunction> inverseCumulativeDistributionFunctions = new IntFunction>() {
@Override
public IntFunction apply(int i) {
return new IntFunction() {
@Override
public DoubleUnaryOperator apply(int j) {
if(j==0) {
// The Brownian increment
final double sqrtOfTimeStep = Math.sqrt(timeDiscretization.getTimeStep(i));
return new DoubleUnaryOperator() {
@Override
public double applyAsDouble(double x) {
return NormalDistribution.inverseCumulativeDistribution(x)*sqrtOfTimeStep;
}
};
}
else if(j==1) {
// The random jump size
return new DoubleUnaryOperator() {
@Override
public double applyAsDouble(double x) {
return NormalDistribution.inverseCumulativeDistribution(x);
}
};
}
else if(j==2) {
// The jump increment
final double timeStep = timeDiscretization.getTimeStep(i);
final PoissonDistribution poissonDistribution = new PoissonDistribution(jumpIntensity*timeStep);
return new DoubleUnaryOperator() {
@Override
public double applyAsDouble(double x) {
return poissonDistribution.inverseCumulativeDistribution(x);
}
};
}
else {
return null;
}
}
};
}
};
final IndependentIncrements icrements = new IndependentIncrementsFromICDF(timeDiscretization, 3, numberOfPaths, seed, inverseCumulativeDistributionFunctions ) {
private static final long serialVersionUID = -7858107751226404629L;
@Override
public RandomVariable getIncrement(int timeIndex, int factor) {
if(factor == 1) {
final RandomVariable Z = super.getIncrement(timeIndex, 1);
final RandomVariable N = super.getIncrement(timeIndex, 2);
return Z.mult(N.sqrt());
}
else {
return super.getIncrement(timeIndex, factor);
}
}
};
this.internalProcess = icrements;
}
@Override
public RandomVariable getIncrement(int timeIndex, int factor) {
return internalProcess.getIncrement(timeIndex, factor);
}
@Override
public TimeDiscretization getTimeDiscretization() {
return internalProcess.getTimeDiscretization();
}
@Override
public int getNumberOfFactors() {
return internalProcess.getNumberOfFactors();
}
@Override
public int getNumberOfPaths() {
return internalProcess.getNumberOfPaths();
}
@Override
public RandomVariable getRandomVariableForConstant(double value) {
return randomVariableFactory.createRandomVariable(value);
}
@Override
public IndependentIncrements getCloneWithModifiedSeed(int seed) {
return internalProcess.getCloneWithModifiedSeed(seed);
}
@Override
public IndependentIncrements getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization) {
return internalProcess.getCloneWithModifiedTimeDiscretization(newTimeDiscretization);
}
/**
* @return the jumpIntensity
*/
public double getJumpIntensity() {
return jumpIntensity;
}
/**
* @return the jumpSizeMean
*/
public double getJumpSizeMean() {
return jumpSizeMean;
}
/**
* @return the jumpSizeStDev
*/
public double getJumpSizeStDev() {
return jumpSizeStDev;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy