All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.montecarlo.VarianceGammaProcess Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
package net.finmath.montecarlo;

import java.io.Serializable;

import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;

/**
 * Implementation of a time-discrete n-dimensional Variance Gamma process via Brownian subordination through
 * a Gamma Process.
 *
 * To simulate the Variance Gamma process with paramters \( (\sigma,\theta,\nu) \) we proceed in two steps:
 * 
    *
  • we simulate the path of a GammaProcess with parameters \( \frac{1}{\nu} and \nu \)
  • *
  • use the GammaProcess as a subordinator for a Brownian motion with drift
  • *
* * \( \theta \Gamma(t) + \sigma W(\Gamma(t)) \) * * The class is immutable and thread safe. It uses lazy initialization. * * @author Alessandro Gnoatto * @version 1.0 */ public class VarianceGammaProcess implements IndependentIncrements, Serializable{ private static final long serialVersionUID = -338038617011804530L; private final double sigma; private final double nu; private final double theta; private final TimeDiscretization timeDiscretization; private final int numberOfFactors; private final int numberOfPaths; private final int seed; private GammaProcess myGammaProcess; private BrownianMotion myBrownianMotion; private final RandomVariableFactory randomVariableFactory = new RandomVariableFromArrayFactory(); private transient RandomVariable[][] varianceGammaIncrements; public VarianceGammaProcess(final double sigma, final double nu, final double theta, final TimeDiscretization timeDiscretization, final int numberOfFactors, final int numberOfPaths, final int seed) { super(); this.sigma = sigma; this.nu = nu; this.theta = theta; this.timeDiscretization = timeDiscretization; this.numberOfFactors = numberOfFactors; this.numberOfPaths = numberOfPaths; this.seed = seed; varianceGammaIncrements = null; } @Override public RandomVariable getIncrement(final int timeIndex, final int factor) { // Thread safe lazy initialization synchronized(this) { if(varianceGammaIncrements == null) { doGenerateVarianceGammaIncrements(); } } /* * For performance reasons we return directly the stored data (no defensive copy). * We return an immutable object to ensure that the receiver does not alter the data. */ return varianceGammaIncrements[timeIndex][factor]; } /** *Lazy initialization of gammaIncrement. Synchronized to ensure thread safety of lazy init. */ private void doGenerateVarianceGammaIncrements() { if(varianceGammaIncrements != null) { return; } myGammaProcess = new GammaProcess(timeDiscretization,numberOfFactors,numberOfPaths,seed,1/nu,nu); myBrownianMotion = new BrownianMotionFromMersenneRandomNumbers(timeDiscretization,numberOfFactors,numberOfPaths,seed+1); varianceGammaIncrements = new RandomVariable[timeDiscretization.getNumberOfTimeSteps()][numberOfFactors]; /* * Generate variance gamma distributed independent increments. * * Since we already have a Brownian motion and a Gamma process at our disposal, * we are simply combining them. */ for(int timeIndex = 0; timeIndex < timeDiscretization.getNumberOfTimeSteps(); timeIndex++) { // Generate uncorrelated Gamma distributed increment for(int factor=0; factor




© 2015 - 2025 Weber Informatics LLC | Privacy Policy