net.finmath.montecarlo.assetderivativevaluation.models.InhomogeneousDisplacedLognomalModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 20.01.2004
*/
package net.finmath.montecarlo.assetderivativevaluation.models;
import java.util.Map;
import net.finmath.montecarlo.RandomVariableFactory;
import net.finmath.montecarlo.RandomVariableFromArrayFactory;
import net.finmath.montecarlo.model.AbstractProcessModel;
import net.finmath.montecarlo.process.MonteCarloProcess;
import net.finmath.stochastic.RandomVariable;
/**
* This class implements an inhomogeneous displaced log-normal model, that is, it provides the drift and volatility specification
* and performs the calculation of the numeraire (consistent with the dynamics, i.e. the drift).
*
* The model is
* \[
* \mathrm{d}S = r S dt + \sigma (S + d) \mathrm{d}W, \quad S(0) = S_{0},
* \]
* \[
* \mathrm{d}N = r N \mathrm{d}t, \quad N(0) = N_{0},
* \]
*
* Note that
* \[
* \mathrm{d}(S/N) = \sigma (S/N + d/N) \mathrm{d}W
* \]
* i.e.
* \[
* \mathrm{d}(S/N + d/N) = -r d/N dt + \sigma (S/N + d/N) \mathrm{d}W
* \]
*
* The class provides the model of S to an {@link net.finmath.montecarlo.process.MonteCarloProcess}
* via the specification of (via X = S/N+d/N)
* \( S = f(X) = N X - d \), \( \mu = d \frac{exp(- r t_2) - exp(- r t_1)}{t_2-t_1} \), \( \lambda_{1,1} = \sigma X \),
* of the SDE
* \[
* dX = \mu dt + \lambda_{1,1} dW, \quad X(0) = S_{0} + e,
* \]
* with \( N(0) = 1 \). See {@link net.finmath.montecarlo.process.MonteCarloProcess} for the notation.
*
* @author Christian Fries
* @see net.finmath.montecarlo.process.MonteCarloProcess The interface for numerical schemes.
* @see net.finmath.montecarlo.model.ProcessModel The interface for models provinding parameters to numerical schemes.
* @version 1.0
*/
public class InhomogeneousDisplacedLognomalModel extends AbstractProcessModel {
private final RandomVariableFactory randomVariableFactory;
private final RandomVariable initialValue;
private final RandomVariable riskFreeRate; // Actually the same as the drift (which is not stochastic)
private final RandomVariable displacement;
private final RandomVariable volatility;
private final boolean isUseMilsteinCorrection;
/**
* Create a blended normal/lognormal model.
*
* @param randomVariableFactory The RandomVariableFactory used to generate random variables from constants.
* @param initialValue Spot value.
* @param riskFreeRate The risk free rate.
* @param displacement The displacement parameter d.
* @param volatility The volatility.
* @param isUseMilsteinCorrection If true, a Milstein scheme correction is applied in the drift.
*/
public InhomogeneousDisplacedLognomalModel(
final RandomVariableFactory randomVariableFactory,
final RandomVariable initialValue,
final RandomVariable riskFreeRate,
final RandomVariable displacement,
final RandomVariable volatility,
final boolean isUseMilsteinCorrection) {
super();
this.randomVariableFactory = randomVariableFactory;
this.initialValue = initialValue;
this.riskFreeRate = riskFreeRate;
this.displacement = displacement;
this.volatility = volatility;
this.isUseMilsteinCorrection = isUseMilsteinCorrection;
}
/**
* Create a blended normal/lognormal model.
*
* @param randomVariableFactory The RandomVariableFactory used to generate random variables from constants.
* @param initialValue Spot value.
* @param riskFreeRate The risk free rate.
* @param displacement The displacement parameter d.
* @param volatility The volatility.
* @param isUseMilsteinCorrection If true, the drift will include the Milstein correction (making an Euler scheme a Milstein scheme).
*/
public InhomogeneousDisplacedLognomalModel(
final RandomVariableFactory randomVariableFactory,
final double initialValue,
final double riskFreeRate,
final double displacement,
final double volatility,
final boolean isUseMilsteinCorrection) {
this(
randomVariableFactory,
randomVariableFactory.createRandomVariable(initialValue),
randomVariableFactory.createRandomVariable(riskFreeRate),
randomVariableFactory.createRandomVariable(displacement),
randomVariableFactory.createRandomVariable(volatility),
isUseMilsteinCorrection);
}
/**
* Create a blended normal/lognormal model.
*
* @param initialValue Spot value.
* @param riskFreeRate The risk free rate.
* @param displacement The displacement parameter d.
* @param volatility The volatility.
* @param isUseMilsteinCorrection If true, the drift will include the Milstein correction (making an Euler scheme a Milstein scheme).
*/
public InhomogeneousDisplacedLognomalModel(
final double initialValue,
final double riskFreeRate,
final double displacement,
final double volatility,
final boolean isUseMilsteinCorrection) {
this(new RandomVariableFromArrayFactory(), initialValue, riskFreeRate, displacement, volatility, isUseMilsteinCorrection);
}
/**
* Create a blended normal/lognormal model.
*
* @param initialValue Spot value.
* @param riskFreeRate The risk free rate.
* @param displacement The displacement parameter d.
* @param volatility The volatility.
*/
public InhomogeneousDisplacedLognomalModel(
final double initialValue,
final double riskFreeRate,
final double displacement,
final double volatility) {
this(initialValue, riskFreeRate, displacement, volatility, false);
}
@Override
public RandomVariable[] getInitialState(MonteCarloProcess process) {
return new RandomVariable[] { initialValue.add(displacement) };
}
@Override
public RandomVariable[] getDrift(final MonteCarloProcess process, final int timeIndex, final RandomVariable[] realizationAtTimeIndex, final RandomVariable[] realizationPredictor) {
final double time = process.getTimeDiscretization().getTime(timeIndex);
final double timeNext = process.getTimeDiscretization().getTime(timeIndex+1);
final double dt = timeNext - time;
final RandomVariable[] drift = new RandomVariable[realizationAtTimeIndex.length];
for(int componentIndex = 0; componentIndex dataModified) {
/*
* Determine the new model parameters from the provided parameter map.
*/
final RandomVariableFactory newRandomVariableFactory = (RandomVariableFactory)dataModified.getOrDefault("randomVariableFactory", randomVariableFactory);
final RandomVariable newInitialValue = RandomVariableFactory.getRandomVariableOrDefault(newRandomVariableFactory, dataModified.get("initialValue"), initialValue);
final RandomVariable newRiskFreeRate = RandomVariableFactory.getRandomVariableOrDefault(newRandomVariableFactory, dataModified.get("riskFreeRate"), riskFreeRate);
final RandomVariable newDisplacement = RandomVariableFactory.getRandomVariableOrDefault(newRandomVariableFactory, dataModified.get("displacement"), displacement);
final RandomVariable newVolatility = RandomVariableFactory.getRandomVariableOrDefault(newRandomVariableFactory, dataModified.get("volatility"), volatility);
return new InhomogeneousDisplacedLognomalModel(newRandomVariableFactory, newInitialValue, newRiskFreeRate, newDisplacement, newVolatility, isUseMilsteinCorrection);
}
@Override
public String toString() {
return "InhomogeneousDisplacedLognomalModel [randomVariableFactory=" + randomVariableFactory + ", initialValue="
+ initialValue + ", riskFreeRate=" + riskFreeRate + ", displacement=" + displacement + ", volatility="
+ volatility + ", isUseMilsteinCorrection=" + isUseMilsteinCorrection + "]";
}
public RandomVariableFactory getRandomVariableFactory() {
return randomVariableFactory;
}
public RandomVariable getInitialValue() {
return initialValue;
}
/**
* Returns the risk free rate parameter of this model.
*
* @return Returns the riskFreeRate.
*/
public RandomVariable getRiskFreeRate() {
return riskFreeRate;
}
public RandomVariable getDisplacement() {
return displacement;
}
/**
* Returns the volatility parameter of this model.
*
* @return Returns the volatility.
*/
public RandomVariable getVolatility() {
return volatility;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy