net.finmath.montecarlo.process.MonteCarloProcessFromProcessModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 19.01.2004
*/
package net.finmath.montecarlo.process;
import net.finmath.montecarlo.model.ProcessModel;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;
/**
* This class is an abstract base class to implement a multi-dimensional multi-factor Ito process.
* The dimension is called numberOfComponents
here.
* The default for numberOfFactors
is 1.
*
* This base class manages the time discretization and delegation to the model.
*
* @author Christian Fries
* @see MonteCarloProcess The interface definition contains more details.
* @version 1.5
*/
public abstract class MonteCarloProcessFromProcessModel implements MonteCarloProcess, Cloneable {
private final ProcessModel model;
private final TimeDiscretization timeDiscretization;
/**
* Create a discretization scheme / a time discrete process.
*
* @param timeDiscretization The time discretization used for the discretization scheme.
* @param model Set the model used to generate the stochastic process. The model has to implement {@link net.finmath.montecarlo.model.ProcessModel}.
*/
public MonteCarloProcessFromProcessModel(final TimeDiscretization timeDiscretization, final ProcessModel model) {
super();
this.timeDiscretization = timeDiscretization;
this.model = model;
}
public abstract Object getCloneWithModifiedSeed(int seed);
/*
* Delegation to model
*/
/**
* Get the model used to generate the stochastic process.
* The model has to implement {@link net.finmath.montecarlo.model.ProcessModel}.
*/
@Override
public ProcessModel getModel() {
return model;
}
@Override
public int getNumberOfComponents() {
return model.getNumberOfComponents();
}
public RandomVariable[] getInitialState() {
return model.getInitialState(this);
}
public RandomVariable[] getDrift(final int timeIndex, final RandomVariable[] realizationAtTimeIndex, final RandomVariable[] realizationPredictor) {
return model.getDrift(this, timeIndex, realizationAtTimeIndex, realizationPredictor);
}
public RandomVariable[] getFactorLoading(final int timeIndex, final int componentIndex, final RandomVariable[] realizationAtTimeIndex) {
// Delegate to model
return model.getFactorLoading(this, timeIndex, componentIndex, realizationAtTimeIndex);
}
public RandomVariable applyStateSpaceTransform(final int timeIndex, final int componentIndex, final RandomVariable randomVariable) {
// Delegate to model
return model.applyStateSpaceTransform(this, timeIndex, componentIndex, randomVariable);
}
public RandomVariable applyStateSpaceTransformInverse(final int timeIndex, final int componentIndex, final RandomVariable randomVariable) {
// Delegate to model
return model.applyStateSpaceTransformInverse(this, timeIndex, componentIndex, randomVariable);
}
/*
* Time discretization management
*/
@Override
public TimeDiscretization getTimeDiscretization() {
return timeDiscretization;
}
@Override
public double getTime(final int timeIndex) {
if(timeIndex < 0 || timeIndex >= timeDiscretization.getNumberOfTimes()) {
throw new ArrayIndexOutOfBoundsException("Index " + timeIndex + " for process time discretization out of bounds.");
}
return timeDiscretization.getTime(timeIndex);
}
@Override
public int getTimeIndex(final double time) {
return timeDiscretization.getTimeIndex(time);
}
@Override
public abstract MonteCarloProcessFromProcessModel clone();
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy