All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.optimizer.LevenbergMarquardt Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 16.06.2006
 */
package net.finmath.optimizer;

import java.io.Serializable;
import java.util.Arrays;
import java.util.List;
import java.util.Vector;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;
import java.util.logging.Level;
import java.util.logging.Logger;

import net.finmath.functions.LinearAlgebra;

/**
 * This class implements a parallel Levenberg-Marquardt non-linear least-squares fit
 * algorithm.
 *
 * 

* The solver minimizes \( || f ||_{L_{2}} \) for a function \( f:\mathbb{R}^n \rightarrow \mathbb{R}^m \). * The solver requires the calculation of a Jacobi-matrix \( J = \frac{\mathrm{d}f}{\mathrm{d}x} \). The iteration steps * are then defined by * \[ * \Delta x = H_{\lambda}^{-1} J^T f * \] * where \( H_{\lambda} \) is a regularized approximation of the Hessian matrix. * The solver supports two different regularizations. For RegularizationMethod.LEVENBERG the solver uses * \( H_{\lambda} = J^T J + \lambda I \). For RegularizationMethod.LEVENBERG_MARQUARDT the solver uses * \( H_{\lambda} = J^T J + \lambda \text{diag}(J^T J) \). *

* *

* The design avoids the need to define the objective function as a * separate class. The objective function is defined by overriding a class * method, see the sample code below. *

*

* The Levenberg-Marquardt solver is implemented in using multi-threading. * The calculation of the derivatives (in case a specific implementation of * {@code setDerivatives(double[] parameters, double[][] derivatives)} is not * provided) may be performed in parallel by setting the parameter numberOfThreads. *

* *

* To use the solver inherit from it and implement the objective function as * {@code setValues(double[] parameters, double[] values)} where values has * to be set to the value of the objective functions for the given parameters. *
* You may also provide an a derivative for your objective function by * additionally overriding the function {@code setDerivatives(double[] parameters, double[][] derivatives)}, * otherwise the solver will calculate the derivative via finite differences. *

*

* To reject a point, it is allowed to set an element of values to {@link java.lang.Double#NaN} * in the implementation of {@code setValues(double[] parameters, double[] values)}. * Put differently: The solver handles NaN values in values as an error larger than * the current one (regardless of the current error) and rejects the point. *
* Note, however, that is is an error if the initial parameter guess results in an NaN value. * That is, the solver should be initialized with an initial parameter in an admissible region. *

* * The following simple example finds a solution for the equation
* * * * *
Sample linear system of equations.
* 0.0 * x1 + 1.0 * x2 = 5.0 *
* 2.0 * x1 + 1.0 * x2 = 10.0 *
* *
 * 
 * 	LevenbergMarquardt optimizer = new LevenbergMarquardt() {
 * 		// Override your objective function here
 * 		public void setValues(double[] parameters, double[] values) {
 * 			values[0] = parameters[0] * 0.0 + parameters[1];
 * 			values[1] = parameters[0] * 2.0 + parameters[1];
 * 		}
 * 	};
 *
 * 	// Set solver parameters
 * 	optimizer.setInitialParameters(new double[] { 0, 0 });
 * 	optimizer.setWeights(new double[] { 1, 1 });
 * 	optimizer.setMaxIteration(100);
 * 	optimizer.setTargetValues(new double[] { 5, 10 });
 *
 * 	optimizer.run();
 *
 * 	double[] bestParameters = optimizer.getBestFitParameters();
 * 
 * 
* * See the example in the main method below. * *

* The class can be initialized to use a multi-threaded valuation. If initialized * this way the implementation of setValues must be thread-safe. * The solver will evaluate the gradient of the value vector in parallel, i.e., * use as many threads as the number of parameters. *

* * Note: Iteration steps will be logged (java.util.logging) with LogLevel.FINE * * @author Christian Fries * @version 1.6 */ public abstract class LevenbergMarquardt implements Serializable, Cloneable, Optimizer { private static final long serialVersionUID = 4560864869394838155L; /** * The regularization method used to invert the approximation of the * Hessian matrix. * * @author Christian Fries */ public enum RegularizationMethod { /** * The Hessian approximated and regularized as * \( H_{\lambda} = J^T J + \lambda I \). */ LEVENBERG, /** * The Hessian approximated and regularized as * \( H_{\lambda} = J^T J + \lambda \text{diag}(J^T J) \). */ LEVENBERG_MARQUARDT } private final RegularizationMethod regularizationMethod; private double[] initialParameters = null; private double[] parameterSteps = null; private double[] targetValues = null; private double[] weights = null; private int maxIteration = 100; private double lambda = 0.001; private double lambdaDivisor = 3.0; private double lambdaMultiplicator = 2.0; private double errorRootMeanSquaredTolerance = 0.0; // by default we solve upto machine presicion private int iteration = 0; private double[] parameterTest = null; private double[] parameterIncrement = null; private double[] valueTest = null; private double[] parameterCurrent = null; private double[] valueCurrent = null; private double[][] derivativeCurrent = null; private double errorMeanSquaredCurrent = Double.POSITIVE_INFINITY; private double errorRootMeanSquaredChange = Double.POSITIVE_INFINITY; private boolean isParameterCurrentDerivativeValid = false; // These members will be updated in each iteration. These are members to prevent repeated memory allocation. private double[][] hessianMatrix = null; private double[] beta = null; /* * Used for multi-threadded calculation of the derivative. * The use may provide its own executor. If not and numberOfThreads > 1 * we will temporarily create an executor with the specified number of threads. * Note: If an executor was provided upon construction, it will not receive a shutdown when done. */ private int numberOfThreads = 1; private ExecutorService executor = null; private boolean executorShutdownWhenDone = true; private final Logger logger = Logger.getLogger("net.finmath"); // A simple test public static void main(final String[] args) throws SolverException, CloneNotSupportedException { final LevenbergMarquardt optimizer = new LevenbergMarquardt() { private static final long serialVersionUID = -282626938650139518L; // Override your objective function here @Override public void setValues(final double[] parameters, final double[] values) { values[0] = parameters[0] * 0.0 + parameters[1]; values[1] = parameters[0] * 2.0 + parameters[1]; } }; // Set solver parameters optimizer.setInitialParameters(new double[] { 0, 0 }); optimizer.setWeights(new double[] { 1, 1 }); optimizer.setMaxIteration(100); optimizer.setTargetValues(new double[] { 5, 10 }); optimizer.run(); final double[] bestParameters = optimizer.getBestFitParameters(); System.out.println("The solver for problem 1 required " + optimizer.getIterations() + " iterations. The best fit parameters are:"); for (int i = 0; i < bestParameters.length; i++) { System.out.println("\tparameter[" + i + "]: " + bestParameters[i]); } /* * Creating a clone, continuing the search with new target values. * Note that we do not re-define the setValues method. */ final Optimizer optimizer2 = optimizer.getCloneWithModifiedTargetValues(new double[] { 5.1, 10.2 }, new double[] { 1, 1 }, true); optimizer2.run(); final double[] bestParameters2 = optimizer2.getBestFitParameters(); System.out.println("The solver for problem 2 required " + optimizer2.getIterations() + " iterations. The best fit parameters are:"); for (int i = 0; i < bestParameters2.length; i++) { System.out.println("\tparameter[" + i + "]: " + bestParameters2[i]); } } /** * Create a Levenberg-Marquardt solver. * * @param regularizationMethod The regularization method to use. See {@link RegularizationMethod}. * @param initialParameters Initial value for the parameters where the solver starts its search. * @param targetValues Target values to achieve. * @param maxIteration Maximum number of iterations. * @param executorService Executor to be used for concurrent valuation of the derivatives. This is only performed if setDerivative is not overwritten. Warning: The implementation of setValues has to be thread safe! */ public LevenbergMarquardt(final RegularizationMethod regularizationMethod, final double[] initialParameters, final double[] targetValues, final int maxIteration, final ExecutorService executorService) { super(); this.regularizationMethod = regularizationMethod; this.initialParameters = initialParameters; this.targetValues = targetValues; this.maxIteration = maxIteration; weights = new double[targetValues.length]; java.util.Arrays.fill(weights, 1.0); executor = executorService; executorShutdownWhenDone = (executorService == null); numberOfThreads = 1; } /** * Create a Levenberg-Marquardt solver. * * @param initialParameters Initial value for the parameters where the solver starts its search. * @param targetValues Target values to achieve. * @param maxIteration Maximum number of iterations. * @param executorService Executor to be used for concurrent valuation of the derivatives. This is only performed if setDerivative is not overwritten. Warning: The implementation of setValues has to be thread safe! */ public LevenbergMarquardt(final double[] initialParameters, final double[] targetValues, final int maxIteration, final ExecutorService executorService) { this(RegularizationMethod.LEVENBERG_MARQUARDT, initialParameters, targetValues, maxIteration, executorService); } /** * Create a Levenberg-Marquardt solver. * * @param regularizationMethod The regularization method to use. See {@link RegularizationMethod}. * @param initialParameters Initial value for the parameters where the solver starts its search. * @param targetValues Target values to achieve. * @param maxIteration Maximum number of iterations. * @param numberOfThreads Maximum number of threads. Warning: If this number is larger than one, the implementation of setValues has to be thread safe! */ public LevenbergMarquardt(final RegularizationMethod regularizationMethod, final double[] initialParameters, final double[] targetValues, final int maxIteration, final int numberOfThreads) { this(regularizationMethod, initialParameters, targetValues, maxIteration, null); this.numberOfThreads = numberOfThreads; } /** * Create a Levenberg-Marquardt solver. * * @param initialParameters Initial value for the parameters where the solver starts its search. * @param targetValues Target values to achieve. * @param maxIteration Maximum number of iterations. * @param numberOfThreads Maximum number of threads. Warning: If this number is larger than one, the implementation of setValues has to be thread safe! */ public LevenbergMarquardt(final double[] initialParameters, final double[] targetValues, final int maxIteration, final int numberOfThreads) { this(RegularizationMethod.LEVENBERG_MARQUARDT, initialParameters, targetValues, maxIteration, numberOfThreads); } /** * Create a Levenberg-Marquardt solver. * * @param initialParameters List of initial values for the parameters where the solver starts its search. * @param targetValues List of target values to achieve. * @param maxIteration Maximum number of iterations. * @param executorService Executor to be used for concurrent valuation of the derivatives. This is only performed if setDerivative is not overwritten. Warning: The implementation of setValues has to be thread safe! */ public LevenbergMarquardt(final List initialParameters, final List targetValues, final int maxIteration, final ExecutorService executorService) { this(numberListToDoubleArray(initialParameters), numberListToDoubleArray(targetValues), maxIteration, executorService); } /** * Create a Levenberg-Marquardt solver. * * @param initialParameters Initial value for the parameters where the solver starts its search. * @param targetValues Target values to achieve. * @param maxIteration Maximum number of iterations. * @param numberOfThreads Maximum number of threads. Warning: If this number is larger than one, the implementation of setValues has to be thread safe! */ public LevenbergMarquardt(final List initialParameters, final List targetValues, final int maxIteration, final int numberOfThreads) { this(initialParameters, targetValues, maxIteration, null); this.numberOfThreads = numberOfThreads; } /** * Create a Levenberg-Marquardt solver. */ public LevenbergMarquardt() { super(); regularizationMethod = RegularizationMethod.LEVENBERG_MARQUARDT; } /** * Convert a list of numbers to an array of doubles. * * @param listOfNumbers A list of numbers. * @return A corresponding array of doubles executing doubleValue() on each element. */ private static double[] numberListToDoubleArray(final List listOfNumbers) { final double[] arrayOfDoubles = new double[listOfNumbers.size()]; for(int i=0; iWarning: If this number is larger than one, the implementation of setValues has to be thread safe! */ public LevenbergMarquardt(final int numberOfThreads) { super(); regularizationMethod = RegularizationMethod.LEVENBERG_MARQUARDT; this.numberOfThreads = numberOfThreads; } /** * Set the initial parameters for the solver. * * @param initialParameters The initial parameters. * @return A self reference. */ public LevenbergMarquardt setInitialParameters(final double[] initialParameters) { if(done()) { throw new UnsupportedOperationException("Solver cannot be modified after it has run."); } this.initialParameters = initialParameters; return this; } /** * Set the parameter step for the solver. * The parameter step is used to evaluate the derivatives via * finite differences, if analytic derivatives are not provided. * * @param parameterSteps The parameter step. * @return A self reference. */ public LevenbergMarquardt setParameterSteps(final double[] parameterSteps) { if(done()) { throw new UnsupportedOperationException("Solver cannot be modified after it has run."); } this.parameterSteps = parameterSteps; return this; } /** * Set the target values for the solver. The solver will solver the * equation weights * objectiveFunction = targetValues. * * @param targetValues The target values. * @return A self reference. */ public LevenbergMarquardt setTargetValues(final double[] targetValues) { if(done()) { throw new UnsupportedOperationException("Solver cannot be modified after it has run."); } this.targetValues = targetValues; return this; } /** * Set the maximum number of iterations to be performed until the solver * gives up. * * @param maxIteration The maximum number of iterations. * @return A self reference. */ public LevenbergMarquardt setMaxIteration(final int maxIteration) { if(done()) { throw new UnsupportedOperationException("Solver cannot be modified after it has run."); } this.maxIteration = maxIteration; return this; } /** * Set the weight for the objective function. * * @param weights The weights for the objective function. * @return A self reference. */ public LevenbergMarquardt setWeights(final double[] weights) { if(done()) { throw new UnsupportedOperationException("Solver cannot be modified after it has run."); } this.weights = weights; return this; } /** * Set the error tolerance. The solver considers the solution "found" * if the error is not improving by this given error tolerance. * * @param errorTolerance The error tolerance. * @return A self reference. */ public LevenbergMarquardt setErrorTolerance(final double errorTolerance) { if(done()) { throw new UnsupportedOperationException("Solver cannot be modified after it has run."); } errorRootMeanSquaredTolerance = errorTolerance; return this; } /** * Get the parameter λ used in the Tikhonov-like regularization of the Hessian matrix, * that is the \( \lambda \) in \( H + \lambda \diag H \). * * @return the parameter \( \lambda \). */ public double getLambda() { return lambda; } /** * Set the parameter λ used in the Tikhonov-like regularization of the Hessian matrix, * that is the \( \lambda \) in \( H + \lambda \diag H \). * * @param lambda the lambda to set * @return Self reference to this optimizer. */ public LevenbergMarquardt setLambda(final double lambda) { this.lambda = lambda; return this; } /** * Get the multiplicator applied to lambda if the inversion of regularized * Hessian fails, that is, if \( H + \lambda \diag H \) is not invertable. * * @return the lambdaMultiplicator */ public double getLambdaMultiplicator() { return lambdaMultiplicator; } /** * Set the multiplicator applied to lambda if the inversion of regularized * Hessian fails, that is, if \( H + \lambda \diag H \) is not invertable. * * This will make lambda larger, hence let the stepping move slower. * * @param lambdaMultiplicator the lambdaMultiplicator to set. Should be > 1. */ public void setLambdaMultiplicator(final double lambdaMultiplicator) { if(lambdaMultiplicator <= 1.0) { throw new IllegalArgumentException("Parameter lambdaMultiplicator is required to be > 1."); } this.lambdaMultiplicator = lambdaMultiplicator; } /** * Get the divisor applied to lambda (for the next iteration) if the inversion of regularized * Hessian succeeds, that is, if \( H + \lambda \diag H \) is invertable. * * @return the lambdaDivisor */ public double getLambdaDivisor() { return lambdaDivisor; } /** * Set the divisor applied to lambda (for the next iteration) if the inversion of regularized * Hessian succeeds, that is, if \( H + \lambda \diag H \) is invertable. * * This will make lambda smaller, hence let the stepping move faster. * * @param lambdaDivisor the lambdaDivisor to set. Should be > 1. */ public void setLambdaDivisor(final double lambdaDivisor) { if(lambdaDivisor <= 1.0) { throw new IllegalArgumentException("Parameter lambdaDivisor is required to be > 1."); } this.lambdaDivisor = lambdaDivisor; } @Override public double[] getBestFitParameters() { return parameterCurrent; } @Override public double getRootMeanSquaredError() { return Math.sqrt(errorMeanSquaredCurrent); } @Override public int getIterations() { return iteration; } /** * The objective function. Override this method to implement your custom * function. * * @param parameters Input value. The parameter vector. * @param values Output value. The vector of values f(i,parameters), i=1,...,n * @throws SolverException Thrown if the valuation fails, specific cause may be available via the cause() method. */ public abstract void setValues(double[] parameters, double[] values) throws SolverException; /** * The derivative of the objective function. You may override this method * if you like to implement your own derivative. * * @param parameters Input value. The parameter vector. * @param derivatives Output value, where derivatives[i][j] is d(value(j)) / d(parameters(i) * @throws SolverException Thrown if the valuation fails, specific cause may be available via the cause() method. */ public void setDerivatives(final double[] parameters, final double[][] derivatives) throws SolverException { // Calculate new derivatives. Note that this method is called only with // parameters = parameterCurrent, so we may use valueCurrent. final Vector> valueFutures = new Vector<>(parameterCurrent.length); for (int parameterIndex = 0; parameterIndex < parameterCurrent.length; parameterIndex++) { final double[] parametersNew = parameters.clone(); final double[] derivative = derivatives[parameterIndex]; final int workerParameterIndex = parameterIndex; final Callable worker = new Callable() { @Override public double[] call() { double parameterFiniteDifference; if(parameterSteps != null) { parameterFiniteDifference = parameterSteps[workerParameterIndex]; } else { /* * Try to adaptively set a parameter shift. Note that in some * applications it may be important to set parameterSteps. * appropriately. */ parameterFiniteDifference = (Math.abs(parametersNew[workerParameterIndex]) + 1) * 1E-8; } // Shift parameter value parametersNew[workerParameterIndex] += parameterFiniteDifference; // Calculate derivative as (valueUpShift - valueCurrent) / parameterFiniteDifference try { setValues(parametersNew, derivative); } catch (final Exception e) { logger.severe("Valuation failed with exeption " + e.getMessage() + "\n" + e.getStackTrace()); // We signal an exception to calculate the derivative as NaN Arrays.fill(derivative, Double.NaN); } for (int valueIndex = 0; valueIndex < valueCurrent.length; valueIndex++) { derivative[valueIndex] -= valueCurrent[valueIndex]; derivative[valueIndex] /= parameterFiniteDifference; if(Double.isNaN(derivative[valueIndex])) { derivative[valueIndex] = 0.0; } } return derivative; } }; if(executor != null) { final Future valueFuture = executor.submit(worker); valueFutures.add(parameterIndex, valueFuture); } else { final FutureTask valueFutureTask = new FutureTask<>(worker); valueFutureTask.run(); valueFutures.add(parameterIndex, valueFutureTask); } } for (int parameterIndex = 0; parameterIndex < parameterCurrent.length; parameterIndex++) { try { derivatives[parameterIndex] = valueFutures.get(parameterIndex).get(); } catch (final InterruptedException | ExecutionException e) { throw new SolverException(e); } } } /** * You may override this method to implement a custom stop condition. * * @return Stop condition. */ boolean done() { // The solver terminates if... return // Maximum number of iterations is reached (iteration > maxIteration) || // Error does not improve by more that the given error tolerance (errorRootMeanSquaredChange <= errorRootMeanSquaredTolerance) || /* * Lambda is infinite, i.e., no new point is acceptable. * For example, this may happen if setValue repeatedly give contains invalid (NaN) values. */ Double.isInfinite(lambda); } @Override public void run() throws SolverException { // Create an executor for concurrent evaluation of derivatives if(numberOfThreads > 1) { if(executor == null) { executor = Executors.newFixedThreadPool(numberOfThreads); executorShutdownWhenDone = true; } } try { // Allocate memory final int numberOfParameters = initialParameters.length; final int numberOfValues = targetValues.length; parameterTest = initialParameters.clone(); parameterIncrement = new double[numberOfParameters]; parameterCurrent = new double[numberOfParameters]; valueTest = new double[numberOfValues]; valueCurrent = new double[numberOfValues]; derivativeCurrent = new double[parameterCurrent.length][valueCurrent.length]; hessianMatrix = new double[parameterCurrent.length][parameterCurrent.length]; beta = new double[parameterCurrent.length]; iteration = 0; while(true) { // Count iterations iteration++; // Calculate values for test parameters setValues(parameterTest, valueTest); // Calculate error final double errorMeanSquaredTest = getMeanSquaredError(valueTest); /* * Note: The following test will be false if errorMeanSquaredTest is NaN. * That is: NaN is considered as a rejected point. */ if(errorMeanSquaredTest < errorMeanSquaredCurrent) { errorRootMeanSquaredChange = Math.sqrt(errorMeanSquaredCurrent) - Math.sqrt(errorMeanSquaredTest); // Accept point System.arraycopy(parameterTest, 0, parameterCurrent, 0, parameterCurrent.length); System.arraycopy(valueTest, 0, valueCurrent, 0, valueCurrent.length); errorMeanSquaredCurrent = errorMeanSquaredTest; // Derivative has to be recalculated isParameterCurrentDerivativeValid = false; // Decrease lambda (move faster) lambda /= lambdaDivisor; } else { errorRootMeanSquaredChange = Math.sqrt(errorMeanSquaredTest) - Math.sqrt(errorMeanSquaredCurrent); // Reject point, increase lambda (move slower) lambda *= lambdaMultiplicator; } // Update a new parameter trial, if we are not done if (!done()) { updateParameterTest(); } else { break; } // Log iteration if (logger.isLoggable(Level.FINE)) { String logString = "Iteration: " + iteration + "\tLambda=" + lambda + "\tError Current (RMS):" + Math.sqrt(errorMeanSquaredCurrent) + "\tError Change:" + errorRootMeanSquaredChange + "\t"; for (int i = 0; i < parameterCurrent.length; i++) { logString += "[" + i + "] = " + parameterCurrent[i] + "\t"; } logger.fine(logString); } } } finally { // Shutdown executor if present. if(executor != null && executorShutdownWhenDone) { executor.shutdown(); executor = null; } } } public double getMeanSquaredError(final double[] value) { double error = 0.0; for (int valueIndex = 0; valueIndex < value.length; valueIndex++) { final double deviation = value[valueIndex] - targetValues[valueIndex]; error += weights[valueIndex] * deviation * deviation; } return error/value.length; } /** * Calculate a new parameter guess. * * @throws SolverException Thrown if the valuation fails, specific cause may be available via the cause() method. */ private void updateParameterTest() throws SolverException { if (!isParameterCurrentDerivativeValid) { this.setDerivatives(parameterCurrent, derivativeCurrent); isParameterCurrentDerivativeValid = true; } /* * We solve H \Delta x = b, * where H = J^T J is the Hessian approximation and b = J^T (y-f(x)) and \Delta x is the parameterIncrement */ boolean hessianInvalid = true; while (hessianInvalid) { hessianInvalid = false; // Build matrix H (Hessian approximation), that is H = J^T J for (int i = 0; i < parameterCurrent.length; i++) { for (int j = i; j < parameterCurrent.length; j++) { double hessianElement = 0.0; for (int valueIndex = 0; valueIndex < valueCurrent.length; valueIndex++) { hessianElement += weights[valueIndex] * derivativeCurrent[i][valueIndex] * derivativeCurrent[j][valueIndex]; } if (i == j) { if(regularizationMethod == RegularizationMethod.LEVENBERG) { // RegularizationMethod.LEVENBERG - Regularization with a constant lambda hessianElement += lambda; } else { // RegularizationMethod.LEVENBERG_MARQUARDT - Regularization with a lambda time the diagonal of J^T J if (hessianElement == 0.0) { hessianElement = lambda; } else { hessianElement *= 1 + lambda; } } } // The matrix is symmetric hessianMatrix[i][j] = hessianElement; hessianMatrix[j][i] = hessianElement; } } // Build right hand side beta - gradient decent step: beta = J^T (y-f(x)) for (int i = 0; i < parameterCurrent.length; i++) { double betaElement = 0.0; final double[] derivativeCurrentSingleParam = derivativeCurrent[i]; for (int k = 0; k < valueCurrent.length; k++) { betaElement += weights[k] * (targetValues[k] - valueCurrent[k]) * derivativeCurrentSingleParam[k]; } beta[i] = betaElement; } try { // Calculate new increment parameterIncrement = LinearAlgebra.solveLinearEquationSymmetric(hessianMatrix, beta); } catch (final Exception e) { // Matrix not invertable, increase lambda hessianInvalid = true; lambda *= 16; } } // Calculate new parameter for (int i = 0; i < parameterCurrent.length; i++) { parameterTest[i] = parameterCurrent[i] + parameterIncrement[i]; } } /** * Create a clone of this LevenbergMarquardt optimizer. * * The clone will use the same objective function than this implementation, * i.e., the implementation of {@link #setValues(double[], double[])} and * that of {@link #setDerivatives(double[], double[][])} is reused. */ @Override public LevenbergMarquardt clone() throws CloneNotSupportedException { final LevenbergMarquardt clonedOptimizer = (LevenbergMarquardt)super.clone(); clonedOptimizer.isParameterCurrentDerivativeValid = false; clonedOptimizer.iteration = 0; clonedOptimizer.errorMeanSquaredCurrent = Double.POSITIVE_INFINITY; clonedOptimizer.errorRootMeanSquaredChange = Double.POSITIVE_INFINITY; return clonedOptimizer; } /** * Create a clone of this LevenbergMarquardt optimizer with a new vector for the * target values and weights. * * The clone will use the same objective function than this implementation, * i.e., the implementation of {@link #setValues(double[], double[])} and * that of {@link #setDerivatives(double[], double[][])} is reused. * * The initial values of the cloned optimizer will either be the original * initial values of this object or the best parameters obtained by this * optimizer, the latter is used only if this optimized signals a {@link #done()}. * * @param newTargetVaues New array of target values. * @param newWeights New array of weights. * @param isUseBestParametersAsInitialParameters If true and this optimizer is done(), then the clone will use this.{@link #getBestFitParameters()} as initial parameters. * @return A new LevenbergMarquardt optimizer, cloning this one except modified target values and weights. * @throws CloneNotSupportedException Thrown if this optimizer cannot be cloned. */ public LevenbergMarquardt getCloneWithModifiedTargetValues(final double[] newTargetVaues, final double[] newWeights, final boolean isUseBestParametersAsInitialParameters) throws CloneNotSupportedException { final LevenbergMarquardt clonedOptimizer = clone(); clonedOptimizer.targetValues = newTargetVaues.clone(); // Defensive copy clonedOptimizer.weights = newWeights.clone(); // Defensive copy if(isUseBestParametersAsInitialParameters && this.done()) { clonedOptimizer.initialParameters = this.getBestFitParameters(); } return clonedOptimizer; } /** * Create a clone of this LevenbergMarquardt optimizer with a new vector for the * target values and weights. * * The clone will use the same objective function than this implementation, * i.e., the implementation of {@link #setValues(double[], double[])} and * that of {@link #setDerivatives(double[], double[][])} is reused. * * The initial values of the cloned optimizer will either be the original * initial values of this object or the best parameters obtained by this * optimizer, the latter is used only if this optimized signals a {@link #done()}. * * @param newTargetVaues New list of target values. * @param newWeights New list of weights. * @param isUseBestParametersAsInitialParameters If true and this optimizer is done(), then the clone will use this.{@link #getBestFitParameters()} as initial parameters. * @return A new LevenbergMarquardt optimizer, cloning this one except modified target values and weights. * @throws CloneNotSupportedException Thrown if this optimizer cannot be cloned. */ public LevenbergMarquardt getCloneWithModifiedTargetValues(final List newTargetVaues, final List newWeights, final boolean isUseBestParametersAsInitialParameters) throws CloneNotSupportedException { final LevenbergMarquardt clonedOptimizer = clone(); clonedOptimizer.targetValues = numberListToDoubleArray(newTargetVaues); clonedOptimizer.weights = numberListToDoubleArray(newWeights); if(isUseBestParametersAsInitialParameters && this.done()) { clonedOptimizer.initialParameters = this.getBestFitParameters(); } return clonedOptimizer; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy