All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.optimizer.StochasticLevenbergMarquardt Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 16.06.2006
 */
package net.finmath.optimizer;

import java.io.Serializable;
import java.util.Arrays;
import java.util.List;
import java.util.Vector;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;
import java.util.logging.Level;
import java.util.logging.Logger;

import net.finmath.functions.LinearAlgebra;
import net.finmath.montecarlo.RandomVariableFromDoubleArray;
import net.finmath.stochastic.RandomVariable;

/**
 * This class implements a stochastic Levenberg Marquardt non-linear least-squares fit
 * algorithm.
 * 

* The design avoids the need to define the objective function as a * separate class. The objective function is defined by overriding a class * method, see the sample code below. *

* *

* The Levenberg-Marquardt solver is implemented in using multi-threading. * The calculation of the derivatives (in case a specific implementation of * {@code setDerivatives(RandomVariable[] parameters, RandomVariable[][] derivatives)} is not * provided) may be performed in parallel by setting the parameter numberOfThreads. *

* *

* To use the solver inherit from it and implement the objective function as * {@code setValues(RandomVariable[] parameters, RandomVariable[] values)} where values has * to be set to the value of the objective functions for the given parameters. *
* You may also provide an a derivative for your objective function by * additionally overriding the function {@code setDerivatives(RandomVariable[] parameters, RandomVariable[][] derivatives)}, * otherwise the solver will calculate the derivative via finite differences. *

*

* To reject a point, it is allowed to set an element of values to {@link java.lang.Double#NaN} * in the implementation of {@code setValues(RandomVariable[] parameters, RandomVariable[] values)}. * Put differently: The solver handles NaN values in values as an error larger than * the current one (regardless of the current error) and rejects the point. *
* Note, however, that is is an error if the initial parameter guess results in an NaN value. * That is, the solver should be initialized with an initial parameter in an admissible region. *

* * The following simple example finds a solution for the equation
* * * * *
Sample linear system of equations.
* 0.0 * x1 + 1.0 * x2 = 5.0 *
* 2.0 * x1 + 1.0 * x2 = 10.0 *
* *
 * 
 * 	LevenbergMarquardt optimizer = new LevenbergMarquardt() {
 * 		// Override your objective function here
 * 		public void setValues(RandomVariable[] parameters, RandomVariable[] values) {
 * 			values[0] = parameters[0] * 0.0 + parameters[1];
 * 			values[1] = parameters[0] * 2.0 + parameters[1];
 * 		}
 * 	};
 *
 * 	// Set solver parameters
 * 	optimizer.setInitialParameters(new RandomVariable[] { 0, 0 });
 * 	optimizer.setWeights(new RandomVariable[] { 1, 1 });
 * 	optimizer.setMaxIteration(100);
 * 	optimizer.setTargetValues(new RandomVariable[] { 5, 10 });
 *
 * 	optimizer.run();
 *
 * 	RandomVariable[] bestParameters = optimizer.getBestFitParameters();
 * 
 * 
* * See the example in the main method below. * *

* The class can be initialized to use a multi-threaded valuation. If initialized * this way the implementation of setValues must be thread-safe. * The solver will evaluate the gradient of the value vector in parallel, i.e., * use as many threads as the number of parameters. *

* * Note: Iteration steps will be logged (java.util.logging) with LogLevel.FINE * * @author Christian Fries * @version 1.6 */ public abstract class StochasticLevenbergMarquardt implements Serializable, Cloneable, StochasticOptimizer { private static final long serialVersionUID = 4560864869394838155L; /** * The regularization method used to invert the approximation of the * Hessian matrix. * * @author Christian Fries */ public enum RegularizationMethod { /** * The Hessian approximated and regularized as * \( H_{\lambda} = J^T J + \lambda I \). */ LEVENBERG, /** * The Hessian approximated and regularized as * \( H_{\lambda} = J^T J + \lambda \text{diag}(J^T J) \). */ LEVENBERG_MARQUARDT } private final RegularizationMethod regularizationMethod; private RandomVariable[] initialParameters = null; private RandomVariable[] parameterSteps = null; private RandomVariable[] targetValues = null; private final int maxIteration; // Local state of the solver private double lambda; private final double lambdaInitialValue = 0.001; private double lambdaDivisor = 3.0; private double lambdaMultiplicator = 2.0; private final double errorTolerance; private int iteration = 0; private RandomVariable[] parameterTest = null; private RandomVariable[] valueTest = null; private RandomVariable[] parameterCurrent = null; private RandomVariable[] valueCurrent = null; private RandomVariable[][] derivativeCurrent = null; private double errorMeanSquaredCurrent = Double.POSITIVE_INFINITY; private double errorRootMeanSquaredChange = Double.POSITIVE_INFINITY; private boolean isParameterCurrentDerivativeValid; /* * Used for multi-threadded calculation of the derivative. * The use may provide its own executor. If not and numberOfThreads > 1 * we will temporarily create an executor with the specified number of threads. * Note: If an executor was provided upon construction, it will not receive a shutdown when done. */ private int numberOfThreads = 1; private ExecutorService executor = null; private boolean executorShutdownWhenDone = true; private final Logger logger = Logger.getLogger("net.finmath"); // A simple test public static void main(final String[] args) throws SolverException { // RandomVariableDifferentiableAAD is possible here! // RandomVariable[] initialParameters = new RandomVariable[] { new RandomVariableDifferentiableAAD(2), new RandomVariableDifferentiableAAD(2) }; final RandomVariable[] initialParameters = new RandomVariable[] { new RandomVariableFromDoubleArray(2), new RandomVariableFromDoubleArray(2) }; final RandomVariable[] parameterSteps = new RandomVariable[] { new RandomVariableFromDoubleArray(1), new RandomVariableFromDoubleArray(1) }; final int maxIteration = 100; final RandomVariable[] targetValues = new RandomVariable[] { new RandomVariableFromDoubleArray(25), new RandomVariableFromDoubleArray(100) }; final StochasticLevenbergMarquardt optimizer = new StochasticLevenbergMarquardt(initialParameters, targetValues, parameterSteps, maxIteration, 1E-12, null) { private static final long serialVersionUID = -282626938650139518L; // Override your objective function here @Override public void setValues(final RandomVariable[] parameters, final RandomVariable[] values) { values[0] = parameters[0].mult(0.0).add(parameters[1]).squared(); values[1] = parameters[0].mult(2.0).add(parameters[1]).squared(); } }; // Set solver parameters optimizer.run(); final RandomVariable[] bestParameters = optimizer.getBestFitParameters(); System.out.println("The solver for problem 1 required " + optimizer.getIterations() + " iterations. The best fit parameters are:"); for (int i = 0; i < bestParameters.length; i++) { System.out.println("\tparameter[" + i + "]: " + bestParameters[i]); } System.out.println("The solver accuracy is " + optimizer.getRootMeanSquaredError()); /* * Creating a clone, continuing the search with new target values. * Note that we do not re-define the setValues method. */ // Optimizer optimizer2 = optimizer.getCloneWithModifiedTargetValues(new double[] { 5.1, 10.2 }, new double[] { 1, 1 }, true); // optimizer2.run(); // double[] bestParameters2 = optimizer2.getBestFitParameters(); // System.out.println("The solver for problem 2 required " + optimizer2.getIterations() + " iterations. The best fit parameters are:"); // for (int i = 0; i < bestParameters2.length; i++) System.out.println("\tparameter[" + i + "]: " + bestParameters2[i]); } /** * Create a Levenberg-Marquardt solver. * * @param regularizationMethod The regularization method to use. See {@link RegularizationMethod}. * @param initialParameters Initial value for the parameters where the solver starts its search. * @param targetValues Target values to achieve. * @param parameterSteps Step used for finite difference approximation. * @param maxIteration Maximum number of iterations. * @param errorTolerance Error tolerance / accuracy. * @param executorService Executor to be used for concurrent valuation of the derivatives. This is only performed if setDerivative is not overwritten. Warning: The implementation of setValues has to be thread safe! */ public StochasticLevenbergMarquardt(final RegularizationMethod regularizationMethod, final RandomVariable[] initialParameters, final RandomVariable[] targetValues, final RandomVariable[] parameterSteps, final int maxIteration, final double errorTolerance, final ExecutorService executorService) { super(); this.regularizationMethod = regularizationMethod; this.initialParameters = initialParameters; this.targetValues = targetValues; this.parameterSteps = parameterSteps; this.maxIteration = maxIteration; this.errorTolerance = errorTolerance; executor = executorService; executorShutdownWhenDone = (executorService == null); } /** * Create a Levenberg-Marquardt solver. * * @param initialParameters Initial value for the parameters where the solver starts its search. * @param targetValues Target values to achieve. * @param parameterSteps Step used for finite difference approximation. * @param maxIteration Maximum number of iterations. * @param errorTolerance Error tolerance / accuracy. * @param executorService Executor to be used for concurrent valuation of the derivatives. This is only performed if setDerivative is not overwritten. Warning: The implementation of setValues has to be thread safe! */ public StochasticLevenbergMarquardt(final RandomVariable[] initialParameters, final RandomVariable[] targetValues, final RandomVariable[] parameterSteps, final int maxIteration, final double errorTolerance, final ExecutorService executorService) { this(RegularizationMethod.LEVENBERG_MARQUARDT, initialParameters, targetValues, parameterSteps, maxIteration, errorTolerance, executorService); } /** * Create a Levenberg-Marquardt solver. * * @param regularizationMethod The regularization method to use. See {@link RegularizationMethod}. * @param initialParameters Initial value for the parameters where the solver starts its search. * @param targetValues Target values to achieve. * @param parameterSteps Step used for finite difference approximation. * @param maxIteration Maximum number of iterations. * @param errorTolerance Error tolerance / accuracy. * @param numberOfThreads Maximum number of threads. Warning: If this number is larger than one, the implementation of setValues has to be thread safe! */ public StochasticLevenbergMarquardt(final RegularizationMethod regularizationMethod, final RandomVariable[] initialParameters, final RandomVariable[] targetValues, final RandomVariable[] parameterSteps, final int maxIteration, final double errorTolerance, final int numberOfThreads) { this(regularizationMethod, initialParameters, targetValues, parameterSteps, maxIteration, errorTolerance, null); this.numberOfThreads = numberOfThreads; } /** * Get the parameter λ used in the Tikhonov-like regularization of the Hessian matrix, * that is the \( \lambda \) in \( H + \lambda \diag H \). * * @return the parameter \( \lambda \). */ public double getLambda() { return lambda; } /** * Set the parameter λ used in the Tikhonov-like regularization of the Hessian matrix, * that is the \( \lambda \) in \( H + \lambda \diag H \). * * @param lambda the lambda to set */ public void setLambda(final double lambda) { this.lambda = lambda; } /** * Get the multiplicator applied to lambda if the inversion of regularized * Hessian fails, that is, if \( H + \lambda \diag H \) is not invertable. * * @return the lambdaMultiplicator */ public double getLambdaMultiplicator() { return lambdaMultiplicator; } /** * Set the multiplicator applied to lambda if the inversion of regularized * Hessian fails, that is, if \( H + \lambda \diag H \) is not invertable. * * This will make lambda larger, hence let the stepping move slower. * * @param lambdaMultiplicator the lambdaMultiplicator to set. Should be > 1. */ public void setLambdaMultiplicator(final double lambdaMultiplicator) { if(lambdaMultiplicator <= 1.0) { throw new IllegalArgumentException("Parameter lambdaMultiplicator is required to be > 1."); } this.lambdaMultiplicator = lambdaMultiplicator; } /** * Get the divisor applied to lambda (for the next iteration) if the inversion of regularized * Hessian succeeds, that is, if \( H + \lambda \diag H \) is invertable. * * @return the lambdaDivisor */ public double getLambdaDivisor() { return lambdaDivisor; } /** * Set the divisor applied to lambda (for the next iteration) if the inversion of regularized * Hessian succeeds, that is, if \( H + \lambda \diag H \) is invertable. * * This will make lambda smaller, hence let the stepping move faster. * * @param lambdaDivisor the lambdaDivisor to set. Should be > 1. */ public void setLambdaDivisor(final double lambdaDivisor) { if(lambdaDivisor <= 1.0) { throw new IllegalArgumentException("Parameter lambdaDivisor is required to be > 1."); } this.lambdaDivisor = lambdaDivisor; } @Override public RandomVariable[] getBestFitParameters() { return parameterCurrent; } @Override public double getRootMeanSquaredError() { return Math.sqrt(errorMeanSquaredCurrent); } /** * @param errorMeanSquaredCurrent the errorMeanSquaredCurrent to set */ public void setErrorMeanSquaredCurrent(final double errorMeanSquaredCurrent) { this.errorMeanSquaredCurrent = errorMeanSquaredCurrent; } @Override public int getIterations() { return iteration; } protected void prepareAndSetValues(final RandomVariable[] parameters, final RandomVariable[] values) throws SolverException { setValues(parameters, values); } protected void prepareAndSetDerivatives(final RandomVariable[] parameters, final RandomVariable[] values, final RandomVariable[][] derivatives) throws SolverException { setDerivatives(parameters, derivatives); } /** * The objective function. Override this method to implement your custom * function. * * @param parameters Input value. The parameter vector. * @param values Output value. The vector of values f(i,parameters), i=1,...,n * @throws SolverException Thrown if the valuation fails, specific cause may be available via the cause() method. */ public abstract void setValues(RandomVariable[] parameters, RandomVariable[] values) throws SolverException; /** * The derivative of the objective function. You may override this method * if you like to implement your own derivative. * * @param parameters Input value. The parameter vector. * @param derivatives Output value, where derivatives[i][j] is d(value(j)) / d(parameters(i) * @throws SolverException Thrown if the valuation fails, specific cause may be available via the cause() method. */ public void setDerivatives(RandomVariable[] parameters, final RandomVariable[][] derivatives) throws SolverException { // Calculate new derivatives. Note that this method is called only with // parameters = parameterTest, so we may use valueTest. parameters = parameterCurrent; final Vector> valueFutures = new Vector<>(parameterCurrent.length); for (int parameterIndex = 0; parameterIndex < parameterCurrent.length; parameterIndex++) { final RandomVariable[] parametersNew = parameters.clone(); final RandomVariable[] derivative = derivatives[parameterIndex]; final int workerParameterIndex = parameterIndex; final Callable worker = new Callable() { @Override public RandomVariable[] call() { RandomVariable parameterFiniteDifference; if(parameterSteps != null) { parameterFiniteDifference = parameterSteps[workerParameterIndex]; } else { /* * Try to adaptively set a parameter shift. Note that in some * applications it may be important to set parameterSteps. * appropriately. */ parameterFiniteDifference = parametersNew[workerParameterIndex].abs().add(1.0).mult(1E-8); } // Shift parameter value parametersNew[workerParameterIndex] = parametersNew[workerParameterIndex].add(parameterFiniteDifference); // Calculate derivative as (valueUpShift - valueCurrent) / parameterFiniteDifference try { prepareAndSetValues(parametersNew, derivative); } catch (final Exception e) { // We signal an exception to calculate the derivative as NaN Arrays.fill(derivative, new RandomVariableFromDoubleArray(Double.NaN)); } for (int valueIndex = 0; valueIndex < valueCurrent.length; valueIndex++) { derivative[valueIndex] = derivative[valueIndex].sub(valueCurrent[valueIndex]).div(parameterFiniteDifference); // derivative[valueIndex] = derivative[valueIndex].isNaN().sub(0.5).mult(-1).choose(derivative[valueIndex], new Scalar(0.0)); } return derivative; } }; if(executor != null) { final Future valueFuture = executor.submit(worker); valueFutures.add(parameterIndex, valueFuture); } else { final FutureTask valueFutureTask = new FutureTask<>(worker); valueFutureTask.run(); valueFutures.add(parameterIndex, valueFutureTask); } } for (int parameterIndex = 0; parameterIndex < parameterCurrent.length; parameterIndex++) { try { derivatives[parameterIndex] = valueFutures.get(parameterIndex).get(); } catch (final InterruptedException | ExecutionException e) { throw new SolverException(e); } } } /** * You may override this method to implement a custom stop condition. * * @return Stop condition. */ boolean done() { // The solver terminates if... return // Maximum number of iterations is reached (iteration > maxIteration) || // Error does not improve by more that the given error tolerance (errorRootMeanSquaredChange <= errorTolerance); } @Override public void run() throws SolverException { // Create an executor for concurrent evaluation of derivatives if(numberOfThreads > 1) { if(executor == null) { executor = Executors.newFixedThreadPool(numberOfThreads); executorShutdownWhenDone = true; } } try { // Allocate memory final int numberOfParameters = initialParameters.length; final int numberOfValues = targetValues.length; parameterTest = initialParameters.clone(); parameterCurrent = initialParameters.clone(); valueTest = new RandomVariable[numberOfValues]; valueCurrent = new RandomVariable[numberOfValues]; Arrays.fill(valueCurrent, new RandomVariableFromDoubleArray(Double.NaN)); derivativeCurrent = new RandomVariable[numberOfParameters][numberOfValues]; iteration = 0; lambda = lambdaInitialValue; isParameterCurrentDerivativeValid = false; while(true) { // Count iterations iteration++; // Calculate values for test parameters prepareAndSetValues(parameterTest, valueTest); // Calculate error final double errorMeanSquaredTest = getMeanSquaredError(valueTest); /* * Note: The following test will be false if errorMeanSquaredTest is NaN. * That is: NaN is consider as a rejected point. */ final boolean isPointAccepted = errorMeanSquaredCurrent > errorMeanSquaredTest; if(isPointAccepted) { parameterCurrent = parameterTest.clone(); valueCurrent = valueTest.clone(); errorRootMeanSquaredChange = Math.sqrt(errorMeanSquaredCurrent) - Math.sqrt(errorMeanSquaredTest); errorMeanSquaredCurrent = errorMeanSquaredTest; } // Check if we are done if (done()) { break; } /* * Update lambda */ isParameterCurrentDerivativeValid = !isPointAccepted; if(isPointAccepted) { lambda /= lambdaDivisor; } else { lambda *= lambdaMultiplicator; } /* * Calculate new derivative at parameterTest (where point is accepted). * Note: the first argument should be parameterTest to use shortest operator tree. */ prepareAndSetDerivatives(parameterTest, valueTest, derivativeCurrent); /* * Calculate new parameterTest */ double[] parameterIncrement = new double[parameterCurrent.length]; // These members will be updated in each iteration. These are members to prevent repeated memory allocation. final double[][] hessianMatrix = new double[parameterCurrent.length][parameterCurrent.length]; final double[] beta = new double[parameterCurrent.length]; boolean hessianInvalid = true; while (hessianInvalid) { // Build matrix H (hessian approximation) for (int i = 0; i < parameterCurrent.length; i++) { for (int j = i; j < parameterCurrent.length; j++) { double alphaElement = 0.0; for (int valueIndex = 0; valueIndex < valueCurrent.length; valueIndex++) { if(derivativeCurrent[i][valueIndex] != null && derivativeCurrent[j][valueIndex] != null) { alphaElement += derivativeCurrent[i][valueIndex].mult(derivativeCurrent[j][valueIndex]).getAverage(); } } if (i == j) { if(regularizationMethod == RegularizationMethod.LEVENBERG) { // RegularizationMethod.LEVENBERG - Regularization with a constant lambda alphaElement += lambda; } else { // RegularizationMethod.LEVENBERG_MARQUARDT - Regularization with a lambda time the diagonal of JTJ if (alphaElement == 0.0) { alphaElement = lambda; } else { alphaElement *= 1 + lambda; } } } hessianMatrix[i][j] = alphaElement; hessianMatrix[j][i] = alphaElement; } } // Build beta (Newton step) for (int i = 0; i < parameterCurrent.length; i++) { double betaElement = 0.0; final RandomVariable[] derivativeCurrentSingleParam = derivativeCurrent[i]; for (int k = 0; k < valueCurrent.length; k++) { if(derivativeCurrentSingleParam[k] != null) { betaElement += targetValues[k].sub(valueCurrent[k]).mult(derivativeCurrentSingleParam[k]).getAverage(); } } beta[i] = betaElement; } try { // Calculate new increment parameterIncrement = LinearAlgebra.solveLinearEquationSymmetric(hessianMatrix, beta); hessianInvalid = false; } catch (final Exception e) { hessianInvalid = true; lambda *= 16; } } // Calculate new parameter for (int i = 0; i < parameterCurrent.length; i++) { parameterTest[i] = parameterCurrent[i].add(parameterIncrement[i]); } // Log iteration if (logger.isLoggable(Level.FINE)) { String logString = "Iteration: " + iteration + "\tLambda=" + lambda + "\tError Current (RMS):" + Math.sqrt(errorMeanSquaredCurrent) + "\tError Change:" + errorRootMeanSquaredChange + "\t"; for (int i = 0; i < parameterCurrent.length; i++) { logString += "[" + i + "] = " + parameterCurrent[i].doubleValue() + "\t"; } logger.fine(logString); } } } finally { // Shutdown executor if present. if(executor != null && executorShutdownWhenDone) { executor.shutdown(); executor = null; } } } public double getMeanSquaredError(final RandomVariable[] value) { double error = 0.0; for (int valueIndex = 0; valueIndex < value.length; valueIndex++) { final double deviationSquared = value[valueIndex].sub(targetValues[valueIndex]).squared().getAverage(); error = error + deviationSquared; } return error / value.length; } /** * Create a clone of this LevenbergMarquardt optimizer. * * The clone will use the same objective function than this implementation, * i.e., the implementation of {@link #setValues(RandomVariable[], RandomVariable[])} and * that of {@link #setDerivatives(RandomVariable[], RandomVariable[][])} is reused. */ @Override public StochasticLevenbergMarquardt clone() throws CloneNotSupportedException { throw new CloneNotSupportedException(); } /** * Create a clone of this LevenbergMarquardt optimizer with a new vector for the * target values and weights. * * The clone will use the same objective function than this implementation, * i.e., the implementation of {@link #setValues(RandomVariable[], RandomVariable[])} and * that of {@link #setDerivatives(RandomVariable[], RandomVariable[][])} is reused. * * The initial values of the cloned optimizer will either be the original * initial values of this object or the best parameters obtained by this * optimizer, the latter is used only if this optimized signals a {@link #done()}. * * @param newTargetVaues New array of target values. * @param newWeights New array of weights. * @param isUseBestParametersAsInitialParameters If true and this optimizer is done(), then the clone will use this.{@link #getBestFitParameters()} as initial parameters. * @return A new LevenbergMarquardt optimizer, cloning this one except modified target values and weights. * @throws CloneNotSupportedException Thrown if this optimizer cannot be cloned. */ public StochasticLevenbergMarquardt getCloneWithModifiedTargetValues(final RandomVariable[] newTargetVaues, final RandomVariable[] newWeights, final boolean isUseBestParametersAsInitialParameters) throws CloneNotSupportedException { final StochasticLevenbergMarquardt clonedOptimizer = clone(); clonedOptimizer.targetValues = newTargetVaues.clone(); // Defensive copy if(isUseBestParametersAsInitialParameters && this.done()) { clonedOptimizer.initialParameters = this.getBestFitParameters(); } return clonedOptimizer; } /** * Create a clone of this LevenbergMarquardt optimizer with a new vector for the * target values and weights. * * The clone will use the same objective function than this implementation, * i.e., the implementation of {@link #setValues(RandomVariable[], RandomVariable[])} and * that of {@link #setDerivatives(RandomVariable[], RandomVariable[][])} is reused. * * The initial values of the cloned optimizer will either be the original * initial values of this object or the best parameters obtained by this * optimizer, the latter is used only if this optimized signals a {@link #done()}. * * @param newTargetVaues New list of target values. * @param newWeights New list of weights. * @param isUseBestParametersAsInitialParameters If true and this optimizer is done(), then the clone will use this.{@link #getBestFitParameters()} as initial parameters. * @return A new LevenbergMarquardt optimizer, cloning this one except modified target values and weights. * @throws CloneNotSupportedException Thrown if this optimizer cannot be cloned. */ public StochasticLevenbergMarquardt getCloneWithModifiedTargetValues(final List newTargetVaues, final List newWeights, final boolean isUseBestParametersAsInitialParameters) throws CloneNotSupportedException { final StochasticLevenbergMarquardt clonedOptimizer = clone(); clonedOptimizer.targetValues = newTargetVaues.toArray(new RandomVariable[] {}); if(isUseBestParametersAsInitialParameters && this.done()) { clonedOptimizer.initialParameters = this.getBestFitParameters(); } return clonedOptimizer; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy