net.finmath.singleswaprate.annuitymapping.ExponentialNormalizer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.singleswaprate.annuitymapping;
import net.finmath.marketdata.model.curves.ForwardCurve;
import net.finmath.marketdata.model.curves.ForwardCurveFromDiscountCurve;
import net.finmath.marketdata.products.Swap;
import net.finmath.singleswaprate.model.VolatilityCubeModel;
import net.finmath.singleswaprate.products.NormalizingDummyProduct;
import net.finmath.time.Schedule;
/**
* An exponential normalizing function following
* \[
* c e^{-(x / S)^2}
* \]
* where S is the swap rate and c is some scaling factor.
*
* @author Christian Fries
* @author Roland Bachl
*
*/
public class ExponentialNormalizer implements NormalizingFunction {
private final double initialSwapRate;
private final double scale;
/**
* Create the exponential normalizer from information of the product. The constructor assumes a period of 6M for the forward curve.
*
* @param fixSchedule The fix schedule of the product.
* @param floatSchedule The float schedule of the product.
* @param discountCurveName The name of the discount curve.
* @param forwardCurveName The name of the forward curve.
* @param volatilityCubeName The name of the volatility cube.
* @param model The model for context.
*/
public ExponentialNormalizer(final Schedule fixSchedule, final Schedule floatSchedule, final String discountCurveName, final String forwardCurveName, final String volatilityCubeName, final VolatilityCubeModel model) {
super();
final ForwardCurve forwardCurve = new ForwardCurveFromDiscountCurve(discountCurveName,
model.getDiscountCurve(discountCurveName).getReferenceDate(), "6M");
this.initialSwapRate = Swap.getForwardSwapRate(fixSchedule, floatSchedule, forwardCurve, model);
final NormalizingDummyProduct unscaledDummy = new NormalizingDummyProduct(fixSchedule, floatSchedule, discountCurveName, forwardCurveName, volatilityCubeName, new ExponentialNormalizer(initialSwapRate, 1));
this.scale = 1 / unscaledDummy.getValue(fixSchedule.getFixing(0), model);
}
/**
* Create the exponential normalizer with parameters.
*
* @param initialSwapRate The par swap rate.
* @param scale The scale.
*/
public ExponentialNormalizer(final double initialSwapRate, final double scale) {
super();
this.initialSwapRate = initialSwapRate;
this.scale = scale;
}
@Override
public double getValue(final double swapRate) {
final double exponent = - swapRate * swapRate / initialSwapRate / initialSwapRate;
return scale * Math.exp(exponent);
}
@Override
public double getFirstDerivative(final double swapRate) {
final double factor = -2 * swapRate / initialSwapRate / initialSwapRate;
return factor * getValue(swapRate);
}
@Override
public double getSecondDerivative(final double swapRate) {
final double factor = 2 / initialSwapRate / initialSwapRate;
return (factor * factor * swapRate * swapRate - factor) * getValue(swapRate);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy