com.southernstorm.noise.protocol.SymmetricState Maven / Gradle / Ivy
/*
* Copyright (C) 2016 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
package com.southernstorm.noise.protocol;
import java.io.UnsupportedEncodingException;
import java.security.DigestException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.Arrays;
import javax.crypto.BadPaddingException;
import javax.crypto.ShortBufferException;
/**
* Symmetric state for helping manage a Noise handshake.
*/
class SymmetricState implements Destroyable, Cloneable {
// precalculated hash of the Noise name if over 32 bytes, else simply null-padded name
private static final byte[] INIT_CK_XK;
private static final byte[] INIT_CK_IK;
private static final byte[] INIT_CK_N;
private static final byte[] INIT_CK_XK_SSU2;
// precalculated hash of the hash of the Noise name = mixHash(nullPrologue)
private static final byte[] INIT_HASH_XK = new byte[32];
private static final byte[] INIT_HASH_IK = new byte[32];
private static final byte[] INIT_HASH_N = new byte[32];
private static final byte[] INIT_HASH_XK_SSU2 = new byte[32];
static {
INIT_CK_XK = initHash(HandshakeState.protocolName);
INIT_CK_IK = initHash(HandshakeState.protocolName2);
INIT_CK_N = initHash(HandshakeState.protocolName3);
INIT_CK_XK_SSU2 = initHash(HandshakeState.protocolName4);
try {
MessageDigest md = Noise.createHash("SHA256");
md.update(INIT_CK_XK, 0, 32);
md.digest(INIT_HASH_XK, 0, 32);
md.update(INIT_CK_IK, 0, 32);
md.digest(INIT_HASH_IK, 0, 32);
md.update(INIT_CK_N, 0, 32);
md.digest(INIT_HASH_N, 0, 32);
md.update(INIT_CK_XK_SSU2, 0, 32);
md.digest(INIT_HASH_XK_SSU2, 0, 32);
} catch (Exception e) {
throw new IllegalStateException(e);
}
}
/**
* @since 0.9.44
*/
private static byte[] initHash(String protocolName) {
byte[] protocolNameBytes;
try {
protocolNameBytes = protocolName.getBytes("UTF-8");
} catch (UnsupportedEncodingException e) {
// If UTF-8 is not supported, then we are definitely in trouble!
throw new UnsupportedOperationException("UTF-8 encoding is not supported");
}
byte[] rv = new byte[32];
if (protocolNameBytes.length <= 32) {
System.arraycopy(protocolNameBytes, 0, rv, 0, protocolNameBytes.length);
Arrays.fill(rv, protocolNameBytes.length, 32, (byte)0);
} else {
try {
MessageDigest hash = Noise.createHash("SHA256");
hash.update(protocolNameBytes, 0, protocolNameBytes.length);
hash.digest(rv, 0, 32);
} catch (Exception e) {
throw new IllegalStateException(e);
}
}
return rv;
}
private final CipherState cipher;
private final MessageDigest hash;
private final byte[] ck;
private final byte[] h;
private final byte[] prev_h;
/**
* Constructs a new symmetric state object.
* Noise protocol name is hardcoded.
*
* @param cipherName The name of the cipher within protocolName.
* @param hashName The name of the hash within protocolName.
*
* @throws NoSuchAlgorithmException The cipher or hash algorithm in the
* protocol name is not supported.
*/
public SymmetricState(String cipherName, String hashName, String patternId) throws NoSuchAlgorithmException
{
cipher = Noise.createCipher(cipherName);
hash = Noise.createHash(hashName);
int hashLength = hash.getDigestLength();
ck = new byte [hashLength];
h = new byte [hashLength];
prev_h = new byte [hashLength];
byte[] initHash, initCK;
if (patternId.equals(HandshakeState.PATTERN_ID_XK)) {
initCK = INIT_CK_XK;
initHash = INIT_HASH_XK;
} else if (patternId.equals(HandshakeState.PATTERN_ID_IK)) {
initCK = INIT_CK_IK;
initHash = INIT_HASH_IK;
} else if (patternId.equals(HandshakeState.PATTERN_ID_N) ||
patternId.equals(HandshakeState.PATTERN_ID_N_NO_RESPONSE)) {
initCK = INIT_CK_N;
initHash = INIT_HASH_N;
} else if (patternId.equals(HandshakeState.PATTERN_ID_XK_SSU2)) {
initCK = INIT_CK_XK_SSU2;
initHash = INIT_HASH_XK_SSU2;
} else {
throw new IllegalArgumentException("Handshake pattern is not recognized");
}
System.arraycopy(initHash, 0, h, 0, hashLength);
System.arraycopy(initCK, 0, ck, 0, hashLength);
}
/**
* Copy constructor for cloning
* @since 0.9.44
*/
protected SymmetricState(SymmetricState o) throws CloneNotSupportedException {
cipher = o.cipher.clone();
hash = (MessageDigest) o.hash.clone();
ck = Arrays.copyOf(o.ck, o.ck.length);
h = Arrays.copyOf(o.h, o.h.length);
prev_h = Arrays.copyOf(o.prev_h, o.prev_h.length);
}
/**
* Gets the name of the Noise protocol.
*
* @return The protocol name.
*/
public String getProtocolName()
{
return HandshakeState.protocolName;
}
/**
* Gets the length of MAC values in the current state.
*
* @return The length of the MAC value for the underlying cipher
* or zero if the cipher has not yet been initialized with a key.
*/
public int getMACLength()
{
return cipher.getMACLength();
}
/**
* Mixes data into the chaining key.
*
* @param data The buffer containing the data to mix in.
* @param offset The offset of the first data byte to mix in.
* @param length The number of bytes to mix in.
*/
public void mixKey(byte[] data, int offset, int length)
{
int keyLength = cipher.getKeyLength();
byte[] tempKey = new byte [keyLength];
try {
hkdf(ck, 0, ck.length, data, offset, length, ck, 0, ck.length, tempKey, 0, keyLength);
cipher.initializeKey(tempKey, 0);
} finally {
Noise.destroy(tempKey);
}
}
/**
* Mixes data into the handshake hash.
*
* @param data The buffer containing the data to mix in.
* @param offset The offset of the first data byte to mix in.
* @param length The number of bytes to mix in.
*/
public void mixHash(byte[] data, int offset, int length)
{
hashTwo(h, 0, h.length, data, offset, length, h, 0, h.length);
}
/**
* Mixes a pre-shared key into the chaining key and handshake hash.
*
* @param key The pre-shared key value.
*/
public void mixPreSharedKey(byte[] key)
{
byte[] temp = new byte [hash.getDigestLength()];
try {
hkdf(ck, 0, ck.length, key, 0, key.length, ck, 0, ck.length, temp, 0, temp.length);
mixHash(temp, 0, temp.length);
} finally {
Noise.destroy(temp);
}
}
/**
* Mixes a pre-supplied public key into the handshake hash.
*
* @param dh The object containing the public key.
*/
public void mixPublicKey(DHState dh)
{
byte[] temp = new byte [dh.getPublicKeyLength()];
try {
dh.getPublicKey(temp, 0);
mixHash(temp, 0, temp.length);
} finally {
Noise.destroy(temp);
}
}
/**
* Mixes a pre-supplied public key into the chaining key.
*
* @param dh The object containing the public key.
*/
public void mixPublicKeyIntoCK(DHState dh)
{
byte[] temp = new byte [dh.getPublicKeyLength()];
try {
dh.getPublicKey(temp, 0);
mixKey(temp, 0, temp.length);
} finally {
Noise.destroy(temp);
}
}
/**
* Encrypts a block of plaintext and mixes the ciphertext into the handshake hash.
*
* @param plaintext The buffer containing the plaintext to encrypt.
* @param plaintextOffset The offset within the plaintext buffer of the
* first byte or plaintext data.
* @param ciphertext The buffer to place the ciphertext in. This can
* be the same as the plaintext buffer.
* @param ciphertextOffset The first offset within the ciphertext buffer
* to place the ciphertext and the MAC tag.
* @param length The length of the plaintext.
* @return The length of the ciphertext plus the MAC tag.
*
* @throws ShortBufferException There is not enough space in the
* ciphertext buffer for the encrypted data plus MAC value.
*
* The plaintext and ciphertext buffers can be the same for in-place
* encryption. In that case, plaintextOffset must be identical to
* ciphertextOffset.
*
* There must be enough space in the ciphertext buffer to accomodate
* length + getMACLength() bytes of data starting at ciphertextOffset.
*/
public int encryptAndHash(byte[] plaintext, int plaintextOffset, byte[] ciphertext, int ciphertextOffset, int length) throws ShortBufferException
{
int ciphertextLength = cipher.encryptWithAd(h, plaintext, plaintextOffset, ciphertext, ciphertextOffset, length);
mixHash(ciphertext, ciphertextOffset, ciphertextLength);
return ciphertextLength;
}
/**
* I2P - Same as encryptAndHash() but without the post-mixHash(), for N only.
* @since 0.9.49
*/
public int encryptOnly(byte[] plaintext, int plaintextOffset, byte[] ciphertext, int ciphertextOffset, int length) throws ShortBufferException
{
int ciphertextLength = cipher.encryptWithAd(h, plaintext, plaintextOffset, ciphertext, ciphertextOffset, length);
return ciphertextLength;
}
/**
* Decrypts a block of ciphertext and mixes it into the handshake hash.
*
* @param ciphertext The buffer containing the ciphertext to decrypt.
* @param ciphertextOffset The offset within the ciphertext buffer of
* the first byte of ciphertext data.
* @param plaintext The buffer to place the plaintext in. This can be
* the same as the ciphertext buffer.
* @param plaintextOffset The first offset within the plaintext buffer
* to place the plaintext.
* @param length The length of the incoming ciphertext plus the MAC tag.
* @return The length of the plaintext with the MAC tag stripped off.
*
* @throws ShortBufferException There is not enough space in the plaintext
* buffer for the decrypted data.
*
* @throws BadPaddingException The MAC value failed to verify.
*
* The plaintext and ciphertext buffers can be the same for in-place
* decryption. In that case, ciphertextOffset must be identical to
* plaintextOffset.
*/
public int decryptAndHash(byte[] ciphertext, int ciphertextOffset, byte[] plaintext, int plaintextOffset, int length) throws ShortBufferException, BadPaddingException
{
System.arraycopy(h, 0, prev_h, 0, h.length);
mixHash(ciphertext, ciphertextOffset, length);
return cipher.decryptWithAd(prev_h, ciphertext, ciphertextOffset, plaintext, plaintextOffset, length);
}
/**
* I2P - Same as decryptAndHash() but without the post-mixHash(), for N only.
* @since 0.9.49
*/
public int decryptOnly(byte[] ciphertext, int ciphertextOffset, byte[] plaintext, int plaintextOffset, int length) throws ShortBufferException, BadPaddingException
{
return cipher.decryptWithAd(h, ciphertext, ciphertextOffset, plaintext, plaintextOffset, length);
}
/**
* Splits the symmetric state into two ciphers for session encryption.
*
* @return The pair of ciphers for sending and receiving.
*/
public CipherStatePair split()
{
return split(new byte[0], 0, 0);
}
/**
* Splits the symmetric state into two ciphers for session encryption,
* and optionally mixes in a secondary symmetric key.
*
* @param secondaryKey The buffer containing the secondary key.
* @param offset The offset of the first secondary key byte.
* @param length The length of the secondary key in bytes, which
* must be either 0 or 32.
* @return The pair of ciphers for sending and receiving.
*
* @throws IllegalArgumentException The length is not 0 or 32.
*/
public CipherStatePair split(byte[] secondaryKey, int offset, int length)
{
if (length != 0 && length != 32)
throw new IllegalArgumentException("Secondary keys must be 0 or 32 bytes in length");
int keyLength = cipher.getKeyLength();
byte[] k1 = new byte [keyLength];
byte[] k2 = new byte [keyLength];
try {
hkdf(ck, 0, ck.length, secondaryKey, offset, length, k1, 0, k1.length, k2, 0, k2.length);
CipherState c1 = null;
CipherState c2 = null;
CipherStatePair pair = null;
try {
c1 = cipher.fork(k1, 0);
c2 = cipher.fork(k2, 0);
pair = new CipherStatePair(c1, c2);
} finally {
if (c1 == null || c2 == null || pair == null) {
// Could not create some of the objects. Clean up the others
// to avoid accidental leakage of k1 or k2.
if (c1 != null)
c1.destroy();
if (c2 != null)
c2.destroy();
pair = null;
}
}
return pair;
} finally {
Noise.destroy(k1);
Noise.destroy(k2);
}
}
/**
* Gets the current value of the handshake hash.
*
* @return The handshake hash. This must not be modified by the caller.
*
* The handshake hash value is only of use to the application after
* split() has been called.
*/
public byte[] getHandshakeHash()
{
return h;
}
@Override
public void destroy() {
cipher.destroy();
hash.reset();
Noise.destroy(ck);
Noise.destroy(h);
Noise.destroy(prev_h);
}
/**
* Hashes a single data buffer.
*
* @param data The buffer containing the data to hash.
* @param offset Offset into the data buffer of the first byte to hash.
* @param length Length of the data to be hashed.
* @param output The buffer to receive the output hash value.
* @param outputOffset Offset into the output buffer to place the hash value.
* @param outputLength The length of the hash output.
*
* The output buffer can be the same as the input data buffer.
*/
private void hashOne(byte[] data, int offset, int length, byte[] output, int outputOffset, int outputLength)
{
hash.reset();
hash.update(data, offset, length);
try {
hash.digest(output, outputOffset, outputLength);
} catch (DigestException e) {
Arrays.fill(output, outputOffset, outputLength, (byte)0);
}
}
/**
* Hashes two data buffers.
*
* @param data1 The buffer containing the first data to hash.
* @param offset1 Offset into the first data buffer of the first byte to hash.
* @param length1 Length of the first data to be hashed.
* @param data2 The buffer containing the second data to hash.
* @param offset2 Offset into the second data buffer of the first byte to hash.
* @param length2 Length of the second data to be hashed.
* @param output The buffer to receive the output hash value.
* @param outputOffset Offset into the output buffer to place the hash value.
* @param outputLength The length of the hash output.
*
* The output buffer can be same as either of the input buffers.
*/
private void hashTwo(byte[] data1, int offset1, int length1,
byte[] data2, int offset2, int length2,
byte[] output, int outputOffset, int outputLength)
{
hash.reset();
hash.update(data1, offset1, length1);
hash.update(data2, offset2, length2);
try {
hash.digest(output, outputOffset, outputLength);
} catch (DigestException e) {
Arrays.fill(output, outputOffset, outputLength, (byte)0);
}
}
/**
* Computes a HMAC value using key and data values.
*
* @param key The buffer that contains the key.
* @param keyOffset The offset of the key in the key buffer.
* @param keyLength The length of the key in bytes.
* @param data The buffer that contains the data.
* @param dataOffset The offset of the data in the data buffer.
* @param dataLength The length of the data in bytes.
* @param output The output buffer to place the HMAC value in.
* @param outputOffset Offset into the output buffer for the HMAC value.
* @param outputLength The length of the HMAC output.
*/
private void hmac(byte[] key, int keyOffset, int keyLength,
byte[] data, int dataOffset, int dataLength,
byte[] output, int outputOffset, int outputLength)
{
// In all of the algorithms of interest to us, the block length
// is twice the size of the hash length.
int hashLength = hash.getDigestLength();
int blockLength = hashLength * 2;
byte[] block = new byte [blockLength];
int index;
try {
if (keyLength <= blockLength) {
System.arraycopy(key, keyOffset, block, 0, keyLength);
Arrays.fill(block, keyLength, blockLength, (byte)0);
} else {
hash.reset();
hash.update(key, keyOffset, keyLength);
hash.digest(block, 0, hashLength);
Arrays.fill(block, hashLength, blockLength, (byte)0);
}
for (index = 0; index < blockLength; ++index)
block[index] ^= (byte)0x36;
hash.reset();
hash.update(block, 0, blockLength);
hash.update(data, dataOffset, dataLength);
hash.digest(output, outputOffset, hashLength);
for (index = 0; index < blockLength; ++index)
block[index] ^= (byte)(0x36 ^ 0x5C);
hash.reset();
hash.update(block, 0, blockLength);
hash.update(output, outputOffset, hashLength);
hash.digest(output, outputOffset, outputLength);
} catch (DigestException e) {
Arrays.fill(output, outputOffset, outputLength, (byte)0);
} finally {
Noise.destroy(block);
}
}
/**
* Computes a HKDF value.
*
* @param key The buffer that contains the key.
* @param keyOffset The offset of the key in the key buffer.
* @param keyLength The length of the key in bytes.
* @param data The buffer that contains the data.
* @param dataOffset The offset of the data in the data buffer.
* @param dataLength The length of the data in bytes.
* @param output1 The first output buffer.
* @param output1Offset Offset into the first output buffer.
* @param output1Length Length of the first output which can be
* less than the hash length.
* @param output2 The second output buffer.
* @param output2Offset Offset into the second output buffer.
* @param output2Length Length of the second output which can be
* less than the hash length.
*/
private void hkdf(byte[] key, int keyOffset, int keyLength,
byte[] data, int dataOffset, int dataLength,
byte[] output1, int output1Offset, int output1Length,
byte[] output2, int output2Offset, int output2Length)
{
int hashLength = hash.getDigestLength();
byte[] tempKey = new byte [hashLength];
byte[] tempHash = new byte [hashLength + 1];
try {
hmac(key, keyOffset, keyLength, data, dataOffset, dataLength, tempKey, 0, hashLength);
tempHash[0] = (byte)0x01;
hmac(tempKey, 0, hashLength, tempHash, 0, 1, tempHash, 0, hashLength);
System.arraycopy(tempHash, 0, output1, output1Offset, output1Length);
tempHash[hashLength] = (byte)0x02;
hmac(tempKey, 0, hashLength, tempHash, 0, hashLength + 1, tempHash, 0, hashLength);
System.arraycopy(tempHash, 0, output2, output2Offset, output2Length);
} finally {
Noise.destroy(tempKey);
Noise.destroy(tempHash);
}
}
/**
* I2P for getting chaining key for siphash calculation
* @return a copy
*/
public byte[] getChainingKey() {
byte[] rv = new byte[ck.length];
System.arraycopy(ck, 0, rv, 0, ck.length);
return rv;
}
/**
* I2P
* @since 0.9.44
*/
@Override
public SymmetricState clone() throws CloneNotSupportedException {
return new SymmetricState(this);
}
/**
* I2P debug
*/
@Override
public String toString() {
StringBuilder buf = new StringBuilder();
buf.append(" Symmetric State:\n" +
" ck: ");
buf.append(net.i2p.data.Base64.encode(ck));
buf.append("\n" +
" h: ");
buf.append(net.i2p.data.Base64.encode(h));
buf.append('\n');
buf.append(cipher.toString());
return buf.toString();
}
/****
private static final int LENGTH = 33;
public static void main(String args[]) throws Exception {
net.i2p.I2PAppContext ctx = net.i2p.I2PAppContext.getGlobalContext();
byte[] rand = new byte[32];
byte[] data = new byte[LENGTH];
byte[] out = new byte[32];
System.out.println("Warmup");
int RUNS = 25000;
SymmetricState ss = new SymmetricState("ChaChaPoly", "SHA256");
for (int i = 0; i < RUNS; i++) {
ctx.random().nextBytes(rand);
ctx.random().nextBytes(data);
ss.hmac(rand, 0, 32, data, 0, LENGTH, out, 0, 32);
}
System.out.println("Start");
RUNS = 500000;
long start = System.currentTimeMillis();
for (int i = 0; i < RUNS; i++) {
ss.hmac(rand, 0, 32, data, 0, LENGTH, out, 0, 32);
}
long time = System.currentTimeMillis() - start;
System.out.println("Time for " + RUNS + " HMAC-SHA256 computations:");
System.out.println("Noise time (ms): " + time);
}
****/
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy