
ij.process.BinaryInterpolator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ij Show documentation
Show all versions of ij Show documentation
ImageJ is an open source Java image processing program inspired by NIH Image for the Macintosh.
package ij.process;
import ij.IJ;
import ij.ImagePlus;
import ij.ImageStack;
import ij.gui.Roi;
import ij.plugin.filter.ThresholdToSelection;
/*
* This plugin takes a binary stack as input, where some slices are
* labeled (i.e. contain white regions), and some are not. The unlabaled
* regions are interpolated by weighting the signed integer distance
* transformed labeled slices.
*
* from:
* http://fiji.sc/cgi-bin/gitweb.cgi?p=fiji.git;a=blob_plain;f=src-plugins/VIB-lib/vib/BinaryInterpolator.java;h=f6a610659ad624d13f94639bc5c0149712071f9f;hb=refs/heads/master
*/
public class BinaryInterpolator {
int[][] idt;
int w, h;
public void run(ImagePlus image, Roi[] rois) {
w = image.getWidth();
h = image.getHeight();
ImageStack stack = new ImageStack(w, h);
int firstIndex = -1, lastIndex = -1;
for(int i = 1; i < rois.length; i++) {
if(rois[i] != null) {
firstIndex = (firstIndex == -1) ? i : firstIndex;
lastIndex = i;
}
}
if (firstIndex == -1) {
IJ.error("There must be at least one selection in order to interpolate.");
return;
}
for(int i = firstIndex; i <= lastIndex; i++) {
ByteProcessor bp = new ByteProcessor(w, h);
if(rois[i] != null) {
bp.copyBits(rois[i].getMask(),
rois[i].getBounds().x,
rois[i].getBounds().y,
ij.process.Blitter.ADD);
}
stack.addSlice("", bp);
}
run(stack);
ImagePlus roiImage = new ImagePlus("bla", stack);
ThresholdToSelection ts = new ThresholdToSelection();
ts.setup("", roiImage);
for(int i = firstIndex; i <= lastIndex; i++) {
ImageProcessor bp = stack.getProcessor(1);
stack.deleteSlice(1);
int threshold = 255;
bp.setThreshold(threshold, threshold, ImageProcessor.NO_LUT_UPDATE);
ts.run(bp);
rois[i] = roiImage.getRoi();
}
}
public void run(ImageStack stack) {
int sliceCount = stack.getSize();
if (sliceCount < 3) {
IJ.error("Too few slices to interpolate!");
return;
}
IJ.showStatus("getting signed integer distance transform");
w = stack.getWidth();
h = stack.getHeight();
idt = new int[sliceCount][];
int first = sliceCount, last = -1;
for (int z = 0; z < sliceCount; z++) {
idt[z] = getIDT(stack.getProcessor(z + 1).getPixels());
if (idt[z] != null) {
if (z < first)
first = z;
last = z;
}
}
if (first == last || last < 0) {
IJ.error("Not enough to interpolate");
return;
}
IJ.showStatus("calculating weights");
int current = 0, next = first;
for (int z = first; z < last; z++) {
if (z == next) {
current = z;
for (next = z + 1; idt[next] == null; next++);
continue;
}
byte[] p =
(byte[])stack.getProcessor(z + 1).getPixels();
for (int i = 0; i < w * h; i++)
if (0 <= idt[current][i] * (next - z)
+ idt[next][i] * (z - current))
p[i] = (byte)255;
IJ.showProgress(z - first + 1, last - z);
}
}
/*
* The following calculates the signed integer distance transform.
* Distance transform means that each pixel is assigned the distance
* to the boundary.
* IDT means that the distance is not the Euclidean, but the minimal
* sum of neighbour distances with 3 for horizontal and neighbours,
* and 4 for diagonal neighbours (in 3d, the 3d diagonal neighbour
* would be 5).
* Signed means that the outside pixels have a negative sign.
*/
class IDT {
int[] result;
IDT() {
result = new int[w * h];
int infinity = (w + h) * 9;
for (int i = 0; i < result.length; i++)
result[i] = infinity;
}
int init(byte[] p) {
int count = 0;
for (int j = 0; j < h; j++)
for (int i = 0; i < w; i++) {
int idx = i + w * j;
if (isBoundary(p, i, j)) {
result[idx] = 0;
count++;
} else if (isJustOutside(p, i, j))
result[idx] = -1;
}
return count;
}
final void idt(int x, int y, int dx, int dy) {
if (x + dx < 0 || y + dy < 0 ||
x + dx >= w || y + dy >= h)
return;
int value = result[x + dx + w * (y + dy)];
int distance = (dx == 0 || dy == 0 ? 3 : 4);
value += distance * (value < 0 ? -1 : 1);
if (Math.abs(result[x + w * y]) > Math.abs(value))
result[x + w * y] = value;
}
void propagate() {
for (int j = 0; j < h; j++)
for (int i = 0; i < w; i++) {
idt(i, j, -1, 0);
idt(i, j, -1, -1);
idt(i, j, 0, -1);
}
for (int j = h - 1; j >= 0; j--)
for (int i = w - 1; i >= 0; i--) {
idt(i, j, +1, 0);
idt(i, j, +1, +1);
idt(i, j, 0, +1);
}
for (int i = w - 1; i >= 0; i--)
for (int j = h - 1; j >= 0; j--) {
idt(i, j, +1, 0);
idt(i, j, +1, +1);
idt(i, j, 0, +1);
}
for (int i = 0; i < w; i++)
for (int j = 0; j < h; j++) {
idt(i, j, -1, 0);
idt(i, j, -1, -1);
idt(i, j, 0, -1);
}
}
}
int[] getIDT(Object pixels) {
IDT idt = new IDT();
if (idt.init((byte[])pixels) == 0)
return null;
idt.propagate();
return idt.result;
}
final boolean isBoundary(byte[] pixels, int x, int y) {
if (pixels[x + w * y] == 0)
return false;
if (x <= 0 || pixels[x - 1 + w * y] == 0)
return true;
if (x >= w - 1 || pixels[x + 1 + w * y] == 0)
return true;
if (y <= 0 || pixels[x + w * (y - 1)] == 0)
return true;
if (y >= h - 1 || pixels[x + w * (y + 1)] == 0)
return true;
if (x <= 0 || y <= 0 || pixels[x - 1 + w * (y - 1)] == 0)
return true;
if (x <= 0 || y >= h - 1 || pixels[x - 1 + w * (y + 1)] == 0)
return true;
if (x >= w - 1 || y <= 0 || pixels[x + 1 + w * (y - 1)] == 0)
return true;
if (x >= w - 1 || y >= h - 1 ||
pixels[x + 1 + w * (y + 1)] == 0)
return true;
return false;
}
final boolean isJustOutside(byte[] pixels, int x, int y) {
if (pixels[x + w * y] != 0)
return false;
if (x > 0 && pixels[x - 1 + w * y] != 0)
return true;
if (x < w - 1 && pixels[x + 1 + w * y] != 0)
return true;
if (y > 0 && pixels[x + w * (y - 1)] != 0)
return true;
if (y < h - 1 && pixels[x + w * (y + 1)] != 0)
return true;
if (x > 0 && y > 0 && pixels[x - 1 + w * (y - 1)] != 0)
return true;
if (x > 0 && y < h - 1 && pixels[x - 1 + w * (y + 1)] != 0)
return true;
if (x < w - 1 && y > 0 && pixels[x + 1 + w * (y - 1)] != 0)
return true;
if (x < w - 1 && y < h - 1 &&
pixels[x + 1 + w * (y + 1)] != 0)
return true;
return false;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy