net.imglib2.neighborsearch.KNearestNeighborSearchOnIterableRealInterval Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of imglib2 Show documentation
Show all versions of imglib2 Show documentation
A multidimensional, type-agnostic image processing library.
/*
* #%L
* ImgLib2: a general-purpose, multidimensional image processing library.
* %%
* Copyright (C) 2009 - 2018 Tobias Pietzsch, Stephan Preibisch, Stephan Saalfeld,
* John Bogovic, Albert Cardona, Barry DeZonia, Christian Dietz, Jan Funke,
* Aivar Grislis, Jonathan Hale, Grant Harris, Stefan Helfrich, Mark Hiner,
* Martin Horn, Steffen Jaensch, Lee Kamentsky, Larry Lindsey, Melissa Linkert,
* Mark Longair, Brian Northan, Nick Perry, Curtis Rueden, Johannes Schindelin,
* Jean-Yves Tinevez and Michael Zinsmaier.
* %%
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* #L%
*/
package net.imglib2.neighborsearch;
import net.imglib2.IterableRealInterval;
import net.imglib2.RealCursor;
import net.imglib2.RealLocalizable;
import net.imglib2.Sampler;
/**
* k-nearest-neighbor search on {@link IterableRealInterval}
* implemented as linear search.
*
* @author Stephan Saalfeld
*/
public class KNearestNeighborSearchOnIterableRealInterval< T > implements KNearestNeighborSearch< T >
{
final protected IterableRealInterval< T > iterable;
final protected int k, n;
final protected RealCursor< T >[] elements;
final protected double[] squareDistances;
final protected double[] referenceLocation;
/**
* Calculate the square Euclidean distance of a query location to the
* location stored in referenceLocation.
*/
final protected double squareDistance( final RealLocalizable query )
{
double squareSum = 0;
for ( int d = 0; d < n; ++d )
{
final double distance = query.getDoublePosition( d ) - referenceLocation[ d ];
squareSum += distance * distance;
}
return squareSum;
}
@SuppressWarnings( "unchecked" )
public KNearestNeighborSearchOnIterableRealInterval( final IterableRealInterval< T > iterable, final int k )
{
this.iterable = iterable;
this.k = k;
n = iterable.numDimensions();
elements = ( new RealCursor[ k ] );
squareDistances = new double[ k ];
referenceLocation = new double[ n ];
}
@Override
public int numDimensions()
{
return n;
}
@Override
public int getK()
{
return k;
}
@Override
public void search( final RealLocalizable reference )
{
for ( int i = 0; i < k; ++i )
squareDistances[ i ] = Double.MAX_VALUE;
reference.localize( referenceLocation );
final RealCursor< T > cursor = iterable.localizingCursor();
while ( cursor.hasNext() )
{
cursor.fwd();
final double squareDistance = squareDistance( cursor );
int i = k - 1;
if ( squareDistances[ i ] > squareDistance )
{
final RealCursor< T > candidate = cursor.copyCursor();
for ( int j = i - 1; i > 0 && squareDistances[ j ] > squareDistance; --i, --j )
{
squareDistances[ i ] = squareDistances[ j ];
elements[ i ] = elements[ j ];
}
squareDistances[ i ] = squareDistance;
elements[ i ] = candidate;
}
}
}
/* KNearestNeighborSearch */
@Override
public RealLocalizable getPosition( final int i )
{
return elements[ i ];
}
@Override
public RealCursor< T > getSampler( final int i )
{
return elements[ i ];
}
@Override
public double getSquareDistance( final int i )
{
return squareDistances[ i ];
}
@Override
public double getDistance( final int i )
{
return Math.sqrt( squareDistances[ i ] );
}
/* NearestNeighborSearch */
@Override
public RealLocalizable getPosition()
{
return getPosition( 0 );
}
@Override
public Sampler< T > getSampler()
{
return getSampler( 0 );
}
@Override
public double getSquareDistance()
{
return getSquareDistance( 0 );
}
@Override
public double getDistance()
{
return getDistance( 0 );
}
@Override
public KNearestNeighborSearchOnIterableRealInterval< T > copy()
{
final KNearestNeighborSearchOnIterableRealInterval< T > copy = new KNearestNeighborSearchOnIterableRealInterval< T >( iterable, k );
System.arraycopy( referenceLocation, 0, copy.referenceLocation, 0, referenceLocation.length );
for ( int i = 0; i < k; ++i )
{
copy.elements[ i ] = elements[ i ];
copy.squareDistances[ i ] = squareDistances[ i ];
}
return copy;
}
}