net.imglib2.util.Intervals Maven / Gradle / Ivy
Show all versions of imglib2 Show documentation
/*
* #%L
* ImgLib2: a general-purpose, multidimensional image processing library.
* %%
* Copyright (C) 2009 - 2024 Tobias Pietzsch, Stephan Preibisch, Stephan Saalfeld,
* John Bogovic, Albert Cardona, Barry DeZonia, Christian Dietz, Jan Funke,
* Aivar Grislis, Jonathan Hale, Grant Harris, Stefan Helfrich, Mark Hiner,
* Martin Horn, Steffen Jaensch, Lee Kamentsky, Larry Lindsey, Melissa Linkert,
* Mark Longair, Brian Northan, Nick Perry, Curtis Rueden, Johannes Schindelin,
* Jean-Yves Tinevez and Michael Zinsmaier.
* %%
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* #L%
*/
package net.imglib2.util;
import java.util.StringJoiner;
import net.imglib2.Dimensions;
import net.imglib2.FinalDimensions;
import net.imglib2.FinalInterval;
import net.imglib2.FinalRealInterval;
import net.imglib2.Interval;
import net.imglib2.Localizable;
import net.imglib2.RandomAccessibleInterval;
import net.imglib2.RealInterval;
import net.imglib2.RealLocalizable;
import net.imglib2.transform.integer.Mixed;
import net.imglib2.view.ViewTransforms;
/**
* Convenience methods for manipulating {@link Interval Intervals}.
*
* @author Tobias Pietzsch
*/
public class Intervals
{
/**
* Create a {@link FinalInterval} from a parameter list comprising minimum
* coordinates and size. For example, to create a 2D interval from (10, 10)
* to (20, 40) use createMinSize( 10, 10, 11, 31 ).
*
* @param minsize
* a list of 2*n parameters to create a n
* -dimensional interval. The first n parameters specify
* the minimum of the interval, the next n parameters
* specify the dimensions of the interval.
* @return interval with the specified boundaries
*/
public static FinalInterval createMinSize( final long... minsize )
{
return FinalInterval.createMinSize( minsize );
}
/**
* Create a {@link FinalInterval} from a parameter list comprising minimum
* and maximum coordinates. For example, to create a 2D interval from (10,
* 10) to (20, 40) use createMinMax( 10, 10, 20, 40 ).
*
* @param minmax
* a list of 2*n parameters to create a n
* -dimensional interval. The first n parameters specify
* the minimum of the interval, the next n parameters
* specify the maximum of the interval.
* @return interval with the specified boundaries
*/
public static FinalInterval createMinMax( final long... minmax )
{
return FinalInterval.createMinMax( minmax );
}
/**
* THIS METHOD WILL BE REMOVED IN A FUTURE RELEASE. It was mistakenly
* introduced, analogous to {@link #createMinSize(long...)} for integer
* intervals. Dimension is not defined for {@link RealInterval} and
* computing the max as min + dim - 1 does not make sense.
*
*
* Create a {@link FinalRealInterval} from a parameter list comprising
* minimum coordinates and size. For example, to create a 2D interval from
* (10, 10) to (20, 40) use createMinSize( 10, 10, 11, 31 ).
*
* @param minsize
* a list of 2*n parameters to create a n
* -dimensional interval. The first n parameters specify
* the minimum of the interval, the next n parameters
* specify the dimensions of the interval.
* @return interval with the specified boundaries
*/
@Deprecated
public static FinalRealInterval createMinSizeReal( final double... minsize )
{
return FinalRealInterval.createMinSize( minsize );
}
/**
* Create a {@link FinalRealInterval} from a parameter list comprising
* minimum and maximum coordinates. For example, to create a 2D interval
* from (10, 10) to (20, 40) use createMinMax( 10, 10, 20, 40 ).
*
* @param minmax
* a list of 2*n parameters to create a n
* -dimensional interval. The first n parameters specify
* the minimum of the interval, the next n parameters
* specify the maximum of the interval.
* @return interval with the specified boundaries
*/
public static FinalRealInterval createMinMaxReal( final double... minmax )
{
return FinalRealInterval.createMinMax( minmax );
}
/**
* Grow/shrink an interval in all dimensions.
*
* Create a {@link FinalInterval}, which is the input interval plus border
* pixels on every side, in every dimension.
*
* @param interval
* the input interval
* @param border
* how many pixels to add on every side
* @return expanded interval
*/
public static FinalInterval expand( final Interval interval, final long border )
{
final int n = interval.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
interval.min( min );
interval.max( max );
for ( int d = 0; d < n; ++d )
{
min[ d ] -= border;
max[ d ] += border;
}
return FinalInterval.wrap( min, max );
}
/**
* Grow/shrink an interval in all dimensions.
*
* Create a {@link FinalInterval}, which is the input interval plus border
* pixels on every side, in every dimension.
*
* @param interval
* the input interval
* @param border
* how many pixels to add on every side
* @return expanded interval
*/
public static FinalInterval expand( final Interval interval, final long... border )
{
return expand( interval, new FinalDimensions( border ) );
}
/**
* Grow/shrink an interval in all dimensions.
*
* Create a {@link FinalInterval}, which is the input interval plus border
* pixels on every side, in every dimension.
*
* @param interval
* the input interval
* @param border
* how many pixels to add on every side
* @return expanded interval
*/
public static FinalInterval expand( final Interval interval, final Dimensions border )
{
final int n = interval.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
interval.min( min );
interval.max( max );
for ( int d = 0; d < n; ++d )
{
min[ d ] -= border.dimension( d );
max[ d ] += border.dimension( d );
}
return FinalInterval.wrap( min, max );
}
/**
* Grow/shrink an interval in one dimensions.
*
* Create a {@link FinalInterval}, which is the input interval plus border
* pixels on every side, in dimension d.
*
* @param interval
* the input interval
* @param border
* how many pixels to add on every side
* @param d
* in which dimension
* @return expanded interval
*/
public static FinalInterval expand( final Interval interval, final long border, final int d )
{
final int n = interval.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
interval.min( min );
interval.max( max );
min[ d ] -= border;
max[ d ] += border;
return FinalInterval.wrap( min, max );
}
/**
* Translate an interval in one dimension.
*
* Create a {@link FinalInterval}, which is the input interval shifted by t
* in dimension d.
*
* @param interval
* the input interval
* @param t
* by how many pixels to shift the interval
* @param d
* in which dimension
* @return translated interval
*/
public static FinalInterval translate( final Interval interval, final long t, final int d )
{
final int n = interval.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
interval.min( min );
interval.max( max );
min[ d ] += t;
max[ d ] += t;
return FinalInterval.wrap( min, max );
}
/**
* Translate an interval.
*
* Create a {@link FinalInterval}, which is the input interval shifted by
* {@code translation}.
*
* @param interval
* the input interval
* @param translation
* by how many pixels to shift the interval
* @return translated interval
*/
public static FinalInterval translate( final Interval interval, final long... translation )
{
final int n = interval.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
interval.min( min );
interval.max( max );
for ( int d = 0; d < n; ++d )
{
min[ d ] += translation[ d ];
max[ d ] += translation[ d ];
}
return FinalInterval.wrap( min, max );
}
/**
* Translate an interval by {@code -translation}.
*
* Create a {@link FinalInterval}, which is the input interval shifted by
* {@code -translation}.
*
* @param interval
* the input interval
* @param translation
* by how many pixels to inverse-shift the interval
* @return translated interval
*/
public static FinalInterval translateInverse( final Interval interval, final long... translation )
{
final int n = interval.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
interval.min( min );
interval.max( max );
for ( int d = 0; d < n; ++d )
{
min[ d ] -= translation[ d ];
max[ d ] -= translation[ d ];
}
return FinalInterval.wrap( min, max );
}
/**
* Create new interval by adding a dimension to the source {@link Interval}.
* The {@link Interval} boundaries in the additional dimension are set to
* the specified values.
*
* The additional dimension is the last dimension.
*
* @param interval
* the original interval
* @param minOfNewDim
* Interval min in the additional dimension.
* @param maxOfNewDim
* Interval max in the additional dimension.
*/
public static FinalInterval addDimension( final Interval interval, final long minOfNewDim, final long maxOfNewDim )
{
final int m = interval.numDimensions();
final long[] min = new long[ m + 1 ];
final long[] max = new long[ m + 1 ];
for ( int d = 0; d < m; ++d )
{
min[ d ] = interval.min( d );
max[ d ] = interval.max( d );
}
min[ m ] = minOfNewDim;
max[ m ] = maxOfNewDim;
return FinalInterval.wrap( min, max );
}
/**
* Invert the bounds on the d-axis of the given interval
*
* @param interval
* the source
* @param d
* the axis to invert
*/
public static FinalInterval invertAxis( final Interval interval, final int d )
{
final int n = interval.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
interval.min( min );
interval.max( max );
final long tmp = min[ d ];
min[ d ] = -max[ d ];
max[ d ] = -tmp;
return FinalInterval.wrap( min, max );
}
/**
* Take a (n-1)-dimensional slice of a n-dimensional interval, dropping the
* d axis.
*/
public static FinalInterval hyperSlice( final Interval interval, final int d )
{
final int m = interval.numDimensions();
final int n = m - 1;
final long[] min = new long[ n ];
final long[] max = new long[ n ];
for ( int e = 0; e < m; ++e )
{
if ( e < d )
{
min[ e ] = interval.min( e );
max[ e ] = interval.max( e );
}
else if ( e > d )
{
min[ e - 1 ] = interval.min( e );
max[ e - 1 ] = interval.max( e );
}
}
return FinalInterval.wrap( min, max );
}
/**
* Create an interval with permuted axes. The {@code fromAxis} is moved to
* {@code toAxis}, while the order of the other axes is preserved.
*
* If fromAxis=2 and toAxis=4, and axis order of {@code interval} was XYCZT,
* then an interval with axis order XYZTC would be created.
*/
public static FinalInterval moveAxis( final Interval interval, final int fromAxis, final int toAxis )
{
final int n = interval.numDimensions();
final Mixed t = ViewTransforms.moveAxis( n, fromAxis, toAxis );
final int[] newAxisIndices = new int[ n ];
t.getComponentMapping( newAxisIndices );
final long[] min = new long[ n ];
final long[] max = new long[ n ];
for ( int d = 0; d < n; d++ )
{
min[ newAxisIndices[ d ] ] = interval.min( d );
max[ newAxisIndices[ d ] ] = interval.max( d );
}
return FinalInterval.wrap( min, max );
}
/**
* Create an interval with permuted axes. fromAxis and toAxis are swapped.
*
* If fromAxis=0 and toAxis=2, this means that the X-axis of the source
* interval is mapped to the Z-Axis of the permuted interval and vice versa.
* For a XYZ source, a ZYX interval would be created.
*/
public static FinalInterval permuteAxes( final Interval interval, final int fromAxis, final int toAxis )
{
final int n = interval.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
interval.min( min );
interval.max( max );
final long fromMinNew = min[ toAxis ];
final long fromMaxNew = max[ toAxis ];
min[ toAxis ] = min[ fromAxis ];
max[ toAxis ] = max[ fromAxis ];
min[ fromAxis ] = fromMinNew;
max[ fromAxis ] = fromMaxNew;
return FinalInterval.wrap( min, max );
}
/**
* Create an interval that is rotated by 90 degrees. The rotation is
* specified by the fromAxis and toAxis arguments.
*
* If fromAxis=0 and toAxis=1, this means that the X-axis of the source
* interval is mapped to the Y-Axis of the rotated interval. That is, it
* corresponds to a 90 degree clock-wise rotation of the source interval in
* the XY plane.
*
* fromAxis=1 and toAxis=0 corresponds to a counter-clock-wise rotation in
* the XY plane.
*/
public static FinalInterval rotate( final Interval interval, final int fromAxis, final int toAxis )
{
final int n = interval.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
interval.min( min );
interval.max( max );
if ( fromAxis != toAxis )
{
final long fromMinNew = -max[ toAxis ];
final long fromMaxNew = -min[ toAxis ];
min[ toAxis ] = min[ fromAxis ];
max[ toAxis ] = max[ fromAxis ];
min[ fromAxis ] = fromMinNew;
max[ fromAxis ] = fromMaxNew;
}
return FinalInterval.wrap( min, max );
}
/**
* Returns an {@link Interval} with the same dimensions as the given
* interval, but min is all zero.
*/
public static FinalInterval zeroMin( final Interval interval )
{
return new FinalInterval( dimensionsAsLongArray( interval ) );
}
/**
* Return an {@link RealInterval} that is scaled by the given factor.
*/
public static RealInterval scale( final RealInterval interval, final double scale )
{
final int n = interval.numDimensions();
final double[] min = minAsDoubleArray( interval );
final double[] max = maxAsDoubleArray( interval );
for ( int i = 0; i < n; i++ )
{
min[ i ] *= scale;
max[ i ] *= scale;
}
return new FinalRealInterval( min, max );
}
/**
* Compute the intersection of two intervals.
*
* Create a {@link FinalInterval} , which is the intersection of the input
* intervals (i.e., the area contained in both input intervals).
*
* @param intervalA
* input interval
* @param intervalB
* input interval
* @return intersection of input intervals
*/
public static FinalInterval intersect( final Interval intervalA, final Interval intervalB )
{
assert intervalA.numDimensions() == intervalB.numDimensions();
final int n = intervalA.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
for ( int d = 0; d < n; ++d )
{
min[ d ] = Math.max( intervalA.min( d ), intervalB.min( d ) );
max[ d ] = Math.min( intervalA.max( d ), intervalB.max( d ) );
}
return FinalInterval.wrap( min, max );
}
/**
* Compute the intersection of two intervals.
*
* Create a {@link RealInterval} , which is the intersection of the input
* intervals (i.e., the area contained in both input intervals).
*
* @param intervalA
* input interval
* @param intervalB
* input interval
* @return intersection of input intervals
*/
public static FinalRealInterval intersect( final RealInterval intervalA, final RealInterval intervalB )
{
assert intervalA.numDimensions() == intervalB.numDimensions();
final int n = intervalA.numDimensions();
final double[] min = new double[ n ];
final double[] max = new double[ n ];
for ( int d = 0; d < n; ++d )
{
min[ d ] = Math.max( intervalA.realMin( d ), intervalB.realMin( d ) );
max[ d ] = Math.min( intervalA.realMax( d ), intervalB.realMax( d ) );
}
return new FinalRealInterval( min, max );
}
/**
* Compute the smallest interval that contains both input intervals.
*
* Create a {@link FinalInterval} that represents that interval.
*
* May produce unexpected results for empty {@link Interval}s.
* Use {@link #union(Interval, Interval)} if either input interval could be empty.
*
* @param intervalA
* input interval
* @param intervalB
* input interval
* @return union of input intervals
*/
public static FinalInterval unionUnsafe( final Interval intervalA, final Interval intervalB )
{
assert intervalA.numDimensions() == intervalB.numDimensions();
final int n = intervalA.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
for ( int d = 0; d < n; ++d )
{
min[ d ] = Math.min( intervalA.min( d ), intervalB.min( d ) );
max[ d ] = Math.max( intervalA.max( d ), intervalB.max( d ) );
}
return FinalInterval.wrap( min, max );
}
/**
* Compute the smallest interval that contains both input intervals.
*
* Create a {@link FinalInterval} that represents that interval.
*
* @param intervalA
* input interval
* @param intervalB
* input interval
* @return union of input intervals
*/
public static FinalInterval union( final Interval intervalA, final Interval intervalB )
{
assert intervalA.numDimensions() == intervalB.numDimensions();
if( isEmpty( intervalA ))
return new FinalInterval( intervalB );
else if( isEmpty( intervalB ))
return new FinalInterval( intervalA );
return unionUnsafe( intervalA, intervalB );
}
/**
* Compute the smallest interval that contains both input intervals.
*
* Create a {@link RealInterval} that represents that interval.
*
* May produce unexpected results for empty {@link RealInterval}s.
* Use {@link #union(RealInterval, RealInterval)} if either input interval could be empty.
*
* @param intervalA
* input interval
* @param intervalB
* input interval
* @return union of input intervals
*/
public static FinalRealInterval unionUnsafe( final RealInterval intervalA, final RealInterval intervalB )
{
assert intervalA.numDimensions() == intervalB.numDimensions();
final int n = intervalA.numDimensions();
final double[] min = new double[ n ];
final double[] max = new double[ n ];
for ( int d = 0; d < n; ++d )
{
min[ d ] = Math.min( intervalA.realMin( d ), intervalB.realMin( d ) );
max[ d ] = Math.max( intervalA.realMax( d ), intervalB.realMax( d ) );
}
return new FinalRealInterval( min, max );
}
/**
* Compute the smallest interval that contains both input intervals.
*
* Create a {@link RealInterval} that represents that interval.
*
* @param intervalA
* input interval
* @param intervalB
* input interval
* @return union of input intervals
*/
public static FinalRealInterval union( final RealInterval intervalA, final RealInterval intervalB )
{
assert intervalA.numDimensions() == intervalB.numDimensions();
if( isEmpty( intervalA ))
return new FinalRealInterval( intervalB );
else if( isEmpty( intervalB ))
return new FinalRealInterval( intervalA );
return unionUnsafe( intervalA, intervalB );
}
/**
* Compute the smallest {@link Interval} containing the specified
* {@link RealInterval}.
*
* @param ri
* input interval.
* @return the smallest integer interval that completely contains the input
* interval.
*/
public static Interval smallestContainingInterval( final RealInterval ri )
{
final int n = ri.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
for ( int d = 0; d < n; ++d )
{
min[ d ] = ( long ) Math.floor( ri.realMin( d ) );
max[ d ] = ( long ) Math.ceil( ri.realMax( d ) );
}
return FinalInterval.wrap( min, max );
}
/**
* Compute the largest {@link Interval} that is contained in the specified
* {@link RealInterval}.
*
* @param ri
* input interval.
* @return the largest integer interval that is completely contained in the
* input interval.
*/
public static Interval largestContainedInterval( final RealInterval ri )
{
final int n = ri.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
for ( int d = 0; d < n; ++d )
{
min[ d ] = ( long ) Math.ceil( ri.realMin( d ) );
max[ d ] = ( long ) Math.floor( ri.realMax( d ) );
}
return FinalInterval.wrap( min, max );
}
/**
* Check whether the given interval is empty, that is, the maximum is
* smaller than the minimum in some dimension.
*
* @param interval
* interval to check
* @return true when the interval is empty, that is, the maximum is smaller
* than the minimum in some dimension.
*/
public static boolean isEmpty( final Interval interval )
{
final int n = interval.numDimensions();
for ( int d = 0; d < n; ++d )
if ( interval.min( d ) > interval.max( d ) )
return true;
return false;
}
/**
* Check whether the given interval is empty, that is, the maximum is
* smaller than the minimum in some dimension.
*
* @param interval
* interval to check
* @return true when the interval is empty, that is, the maximum is smaller
* than the minimum in some dimension.
*/
public static boolean isEmpty( final RealInterval interval )
{
final int n = interval.numDimensions();
for ( int d = 0; d < n; ++d )
if ( interval.realMin( d ) > interval.realMax( d ) )
return true;
return false;
}
/**
* Test whether the {@code containing} interval contains the
* {@code contained} point. The interval is closed, that is, boundary points
* are contained.
*
* @return true, iff {@code contained} is in {@code containing}.
*/
public static boolean contains( final Interval containing, final Localizable contained )
{
assert containing.numDimensions() == contained.numDimensions();
final int n = containing.numDimensions();
for ( int d = 0; d < n; ++d )
{
final long p = contained.getLongPosition( d );
if ( p < containing.min( d ) || p > containing.max( d ) )
return false;
}
return true;
}
/**
* Test whether the {@code containing} interval contains the
* {@code contained} point. The interval is closed, that is, boundary points
* are contained.
*
* @return true, iff {@code contained} is in {@code containing}.
*/
public static boolean contains( final RealInterval containing, final RealLocalizable contained )
{
assert containing.numDimensions() == contained.numDimensions();
final int n = containing.numDimensions();
for ( int d = 0; d < n; ++d )
{
final double p = contained.getDoublePosition( d );
if ( p < containing.realMin( d ) || p > containing.realMax( d ) )
return false;
}
return true;
}
/**
* Test whether the {@code containing} interval completely contains the
* {@code contained} interval.
*/
final static public boolean contains( final Interval containing, final Interval contained )
{
assert containing.numDimensions() == contained.numDimensions();
final int n = containing.numDimensions();
for ( int d = 0; d < n; ++d )
{
if ( containing.min( d ) > contained.min( d ) || containing.max( d ) < contained.max( d ) )
return false;
}
return true;
}
/**
* Test whether the {@code containing} interval completely contains the
* {@code contained} interval.
*/
final static public boolean contains( final RealInterval containing, final RealInterval contained )
{
assert containing.numDimensions() == contained.numDimensions();
final int n = containing.numDimensions();
for ( int d = 0; d < n; ++d )
{
if ( containing.realMin( d ) > contained.realMin( d ) || containing.realMax( d ) < contained.realMax( d ) )
return false;
}
return true;
}
/**
* Compute the number of elements contained in an (integer) {@link Interval}
* .
*
* @return number of elements in {@code interval}.
*/
public static long numElements( final Dimensions interval )
{
long numPixels = Math.max( interval.dimension( 0 ), 0 );
final int n = interval.numDimensions();
for ( int d = 1; d < n; ++d )
numPixels *= Math.max( interval.dimension( d ), 0 );
return numPixels;
}
/**
* Compute the number of elements contained in an (integer) interval.
*
* @param dimensions
* dimensions of the interval.
* @return number of elements in the interval.
*/
public static long numElements( final int... dimensions )
{
long numPixels = Math.max( dimensions[ 0 ], 0 );
for ( int d = 1; d < dimensions.length; ++d )
numPixels *= Math.max( dimensions[ d ], 0 );
return numPixels;
}
/**
* Compute the number of elements contained in an (integer) interval.
*
* @param dimensions
* dimensions of the interval.
* @return number of elements in the interval.
*/
public static long numElements( final long... dimensions )
{
long numPixels = Math.max( dimensions[ 0 ], 0 );
for ( int d = 1; d < dimensions.length; ++d )
numPixels *= Math.max( dimensions[ d ], 0 );
return numPixels;
}
/**
* Tests whether two intervals are equal in their min / max.
*/
public static boolean equals( final Interval a, final Interval b )
{
if ( a.numDimensions() != b.numDimensions() )
return false;
for ( int d = 0; d < a.numDimensions(); ++d )
if ( a.min( d ) != b.min( d ) || a.max( d ) != b.max( d ) )
return false;
return true;
}
/**
* Tests whether two {@link RealInterval}s are equal in their min / max.
*/
public static boolean equals( final RealInterval a, final RealInterval b )
{
if ( a.numDimensions() != b.numDimensions() )
return false;
for ( int d = 0; d < a.numDimensions(); ++d )
if ( a.realMin( d ) != b.realMin( d ) || a.realMax( d ) != b.realMax( d ) )
return false;
return true;
}
/**
* Tests whether two {@link RealInterval}s are equal in their min / max.
* With respect to the given tolerance.
*/
public static boolean equals( final RealInterval a, final RealInterval b,
final double tolerance)
{
if ( a.numDimensions() != b.numDimensions() )
return false;
for ( int d = 0; d < a.numDimensions(); ++d )
{
final double differenceMin = Math.abs( a.realMin( d ) - b.realMin( d ) );
final double differenceMax = Math.abs( a.realMax( d ) - b.realMax( d ) );
if ( differenceMin > tolerance || differenceMax > tolerance )
return false;
}
return true;
}
/**
* Tests whether two {@link Dimensions} have the same size.
*/
public static boolean equalDimensions( final Dimensions a, final Dimensions b )
{
if ( a.numDimensions() != b.numDimensions() )
return false;
for ( int d = 0; d < a.numDimensions(); ++d )
if ( a.dimension( d ) != b.dimension( d ) )
return false;
return true;
}
/**
* Tests whether two intervals have equal dimensions (same size).
*/
@Deprecated
public static boolean equalDimensions( final Interval a, final Interval b )
{
return equalDimensions( ( Dimensions ) a, ( Dimensions ) b );
}
/**
* Create a long[]
with the dimensions of a {@link Dimensions}.
*
*
* Keep in mind that creating arrays wildly is not good practice and
* consider using the interval directly. See
* {@link Dimensions#dimensions(long[])}.
*
*
* Consider using the more convenient {@link Dimensions#dimensionsAsLongArray}.
* This method may be deprecated in a future release.
*
*
* @param dimensions
* something which has dimensions
*
* @return dimensions as a new long[]
*/
public static long[] dimensionsAsLongArray( final Dimensions dimensions )
{
final long[] dims = new long[ dimensions.numDimensions() ];
dimensions.dimensions( dims );
return dims;
}
/**
* Create a int[]
with the dimensions of an {@link Interval}.
*
*
* Keep in mind that creating arrays wildly is not good practice and
* consider using the interval directly.
*
*
* @param dimensions
* something which has dimensions
*
* @return dimensions as a new int[]
*/
public static int[] dimensionsAsIntArray( final Dimensions dimensions )
{
final int n = dimensions.numDimensions();
final int[] dims = new int[ n ];
for ( int d = 0; d < n; ++d )
dims[ d ] = ( int ) dimensions.dimension( d );
return dims;
}
/**
* Create a long[]
with the minimum of an {@link Interval}.
*
*
* Keep in mind that creating arrays wildly is not good practice and
* consider using the interval directly. See {@link Interval#min(long[])}.
*
*
* Consider using the more convenient {@link Interval#minAsLongArray}.
* This method may be deprecated in a future release.
*
*
* @param interval
* something with interval boundaries
*
* @return minimum as a new long[]
*/
public static long[] minAsLongArray( final Interval interval )
{
final long[] min = new long[ interval.numDimensions() ];
interval.min( min );
return min;
}
/**
* Create a int[]
with the minimum of an {@link Interval}.
*
*
* Keep in mind that creating arrays wildly is not good practice and
* consider using the interval directly.
*
*
* @param interval
* something with interval boundaries
*
* @return minimum as a new int[]
*/
public static int[] minAsIntArray( final Interval interval )
{
final int n = interval.numDimensions();
final int[] min = new int[ n ];
for ( int d = 0; d < n; ++d )
min[ d ] = ( int ) interval.min( d );
return min;
}
/**
* Create a long[]
with the maximum of an {@link Interval}.
*
*
* Keep in mind that creating arrays wildly is not good practice and
* consider using the interval directly. See {@link Interval#max(long[])}.
*
*
*
* Consider using the more convenient {@link Interval#maxAsLongArray}.
* This method may be deprecated in a future release.
*
*
* @param interval
* something with interval boundaries
*
* @return maximum as a new long[]
*/
public static long[] maxAsLongArray( final Interval interval )
{
final long[] max = new long[ interval.numDimensions() ];
interval.max( max );
return max;
}
/**
* Create a int[]
with the maximum of an {@link Interval}.
*
*
* Keep in mind that creating arrays wildly is not good practice and
* consider using the interval directly.
*
*
* @param interval
* something with interval boundaries
*
* @return maximum as a new int[]
*/
public static int[] maxAsIntArray( final Interval interval )
{
final int n = interval.numDimensions();
final int[] max = new int[ n ];
for ( int d = 0; d < n; ++d )
max[ d ] = ( int ) interval.max( d );
return max;
}
/**
* Create a double[]
with the maximum of a {@link RealInterval}
* .
*
*
* Keep in mind that creating arrays wildly is not good practice and
* consider using the interval directly. See
* {@link RealInterval#realMax(double[])}.
*
*
* Consider using the more convenient {@link RealInterval#maxAsDoubleArray}.
* This method may be deprecated in a future release.
*
*
* @param interval
* something with interval boundaries
*
* @return maximum as a new double[]
*/
public static double[] maxAsDoubleArray( final RealInterval interval )
{
final double[] max = new double[ interval.numDimensions() ];
interval.realMax( max );
return max;
}
/**
* Create a double[]
with the minimum of a {@link RealInterval}
* .
*
*
* Keep in mind that creating arrays wildly is not good practice and
* consider using the interval directly. See
* {@link RealInterval#realMin(double[])}.
*
*
* Consider using the more convenient {@link RealInterval#minAsDoubleArray}
* This method may be deprecated in a future release.
*
*
* @param interval
* something with interval boundaries
*
* @return minimum as a new double[]
*/
public static double[] minAsDoubleArray( final RealInterval interval )
{
final double[] min = new double[ interval.numDimensions() ];
interval.realMin( min );
return min;
}
/**
* Returns an image, where each pixel value is the position of the pixel
* represented as {@link Localizable}.
*
* @param interval
* Interval of the returned image.
*/
public static RandomAccessibleInterval< Localizable > positions( final Interval interval ) {
return Localizables.randomAccessibleInterval( interval);
}
/**
* Returns a string that contains min, max and the dimensions of the
* {@link Interval}.
*/
public static String toString( final Interval value )
{
final StringBuilder sb = new StringBuilder();
sb.append( "[(" );
final int n = value.numDimensions();
for ( int d = 0; d < n; d++ )
{
sb.append( value.min( d ) );
if ( d < n - 1 )
sb.append( ", " );
}
sb.append( ") -- (" );
for ( int d = 0; d < n; d++ )
{
sb.append( value.max( d ) );
if ( d < n - 1 )
sb.append( ", " );
}
sb.append( ") = " );
for ( int d = 0; d < n; d++ )
{
sb.append( value.dimension( d ) );
if ( d < n - 1 )
sb.append( "x" );
}
sb.append( "]" );
return sb.toString();
}
/**
* Returns a string that contains min and max of the {@link RealInterval}.
*/
public static String toString( final RealInterval value )
{
final StringBuilder sb = new StringBuilder();
sb.append( "[(" );
final int n = value.numDimensions();
for ( int d = 0; d < n; d++ )
{
sb.append( value.realMin( d ) );
if ( d < n - 1 )
sb.append( ", " );
}
sb.append( ") -- (" );
for ( int d = 0; d < n; d++ )
{
sb.append( value.realMax( d ) );
if ( d < n - 1 )
sb.append( ", " );
}
sb.append( ")]" );
return sb.toString();
}
/**
* Converts the {@link Dimensions} into a string.
*/
public static String toString( final Dimensions value )
{
final StringJoiner joiner = new StringJoiner( "x" );
for ( int d = 0; d < value.numDimensions(); d++ )
joiner.add( Long.toString( value.dimension( d ) ) );
return joiner.toString();
}
}